5,981 research outputs found
From internet architecture research to standards
Many Internet architectural research initiatives have been undertaken over last twenty years. None of them actually reached their intended goal: the evolution of the Internet architecture is still driven by its protocols not by genuine architectural evolutions. As this approach becomes the main limiting factor of Internet growth and application deployment, this paper proposes an alternative research path starting from the root causes (the progressive depletion of the design principles of the Internet) and motivates the need for a common architectural foundation. For this purpose, it proposes a practical methodology to incubate architectural research results as part of the standardization process
Modularity from Fluctuations in Random Graphs and Complex Networks
The mechanisms by which modularity emerges in complex networks are not well
understood but recent reports have suggested that modularity may arise from
evolutionary selection. We show that finding the modularity of a network is
analogous to finding the ground-state energy of a spin system. Moreover, we
demonstrate that, due to fluctuations, stochastic network models give rise to
modular networks. Specifically, we show both numerically and analytically that
random graphs and scale-free networks have modularity. We argue that this fact
must be taken into consideration to define statistically-significant modularity
in complex networks.Comment: 4 page
Light-front time picture of the Bethe-Salpeter equation
We show the light-front representation of the field theoretical
Bethe-Salpeter equation (BSE) in the ladder approximation using the quasi
potential reduction. We discuss the equivalence of the covariant ladder
Bethe-Salpeter equation with an infinite set of coupled equations for the
Green's functions of the different light-front Fock-states.Comment: 7p, Few-Body Systems (2003
Anomalous Hall Effect in three ferromagnets: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30
The Hall resistivity (Rho_xy), resistivity (Rho_xx), and magnetization of
three metallic ferromagnets are investigated as a function of magnetic field
and temperature. The three ferromagnets, EuFe4Sb12 (Tc = 84 K), Yb14MnSb11 (Tc
= 53 K), and Eu8Ga16Ge30 (Tc = 36 K) are Zintl compounds with carrier
concentrations between 1 x 10^21 cm^-3 and 3.5 x 10^21 cm^-3. The relative
decrease in Rho_xx below Tc [Rho_xx(Tc)/Rho_xx(2 K)] is 28, 6.5, and 1.3 for
EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively. The low carrier
concentrations coupled with low magnetic anisotropies allow a relatively clean
separation between the anomalous (Rho_'xy), and normal contributions to the
measured Hall resistivity. For each compound the anomalous contribution in the
zero field limit is fit to alpha Rho_xx + sigma_xy rho_xx^2 for temperatures T
< Tc. The anomalous Hall conductivity, sigma_xy, is -220 +- 5 (Ohm^-1 cm^-1),
-14.7 +- 1 (Ohm^-1 cm^-1), and 28 +- 3 (Ohm^-1 cm^-1) for EuFe4Sb12,
Yb14MnSb11, and Eu8Ga16Ge30 respectively and is independent of temperature for
T < Tc if the change in spontaneous magnetization (order parameter) with
temperature is taken into account. These data are consistent with recent
theories of the anomalous Hall effect that suggest that even for stochiometric
ferromagnetic crystals, such as those studied in this article, the intrinsic
Hall conductivity is finite at T = 0, and is a ground state property that can
be calculated from the electronic structure.Comment: 22 pages, 13 figures Submitted to PR
- …
