1,831 research outputs found

    Asymmetric embedding in brane cosmology

    Full text link
    We derive a system of cosmological equations for a braneworld with induced curvature which is a junction between several bulk spaces. The permutation symmetry of the bulk spaces is not imposed, and the values of the fundamental constants, and even the signatures of the extra dimension, may be different on different sides of the brane. We then consider the usual partial case of two asymmetric bulk spaces and derive an exact closed system of scalar equations on the brane. We apply this result to the cosmological evolution on such a brane and describe its various partial cases.Comment: 10 page

    The Evolution of Voids in the Adhesion Approximation

    Full text link
    We apply the adhesion approximation to study the formation and evolution of voids in the Universe. Our simulations -- carried out using 1283^3 particles in a cubical box with side 128 Mpc -- indicate that the void spectrum evolves with time and that the mean void size in the standard COBE-normalised Cold Dark Matter (hereafter CDM) model with h50=1,h_{50} = 1, scales approximately as Dˉ(z)=Dˉ01+z,\bar D(z) = {\bar D_0\over \sqrt {1+z}}, where Dˉ0≃10.5\bar D_0 \simeq 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way towards reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in kk-space cutoff we find that, the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments merge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitational potential. A central result of this paper is thatComment: Plain TeX, 38 pages Plus 16 Figures (available on request from the first author), IUCAA-28 To appear in The Astrophysical Journal, July 199

    Determination of Wave Function Functionals: The Constrained-Search--Variational Method

    Full text link
    In a recent paper [Phys. Rev. Lett. \textbf{93}, 130401 (2004)], we proposed the idea of expanding the space of variations in variational calculations of the energy by considering the approximate wave function ψ\psi to be a functional of functions χ:ψ=ψ[χ] \chi: \psi = \psi[\chi] rather than a function. The space of variations is expanded because a search over the functions χ\chi can in principle lead to the true wave function. As the space of such variations is large, we proposed the constrained-search-- variational method whereby a constrained search is first performed over all functions χ\chi such that the wave function functional ψ[χ]\psi[\chi] satisfies a physical constraint such as normalization or the Fermi-Coulomb hole sum rule, or leads to the known value of an observable such as the diamagnetic susceptibility, nuclear magnetic constant or Fermi contact term. A rigorous upper bound to the energy is then obtained by application of the variational principle. A key attribute of the method is that the wave function functional is accurate throughout space, in contrast to the standard variational method for which the wave function is accurate only in those regions of space contributing principally to the energy. In this paper we generalize the equations of the method to the determination of arbitrary Hermitian single-particle operators as applied to two-electron atomic and ionic systems. The description is general and applicable to both ground and excited states. A discussion on excited states in conjunction with the theorem of Theophilou is provided.Comment: 26 pages, 4 figures, 5 table

    On the genera Clepsydropsis and Cladoxylon of Unger, and on a new genus Austroclepsis

    Get PDF
    This article does not have an abstract

    Probing the Coupling between Dark Components of the Universe

    Get PDF
    We place observational constraints on a coupling between dark energy and dark matter by using 71 Type Ia supernovae (SNe Ia) from the first year of the five-year Supernova Legacy Survey (SNLS), the cosmic microwave background (CMB) shift parameter from the three-year Wilkinson Microwave Anisotropy Probe (WMAP), and the baryon acoustic oscillation (BAO) peak found in the Sloan Digital Sky Survey (SDSS). The interactions we study are (i) constant coupling delta and (ii) varying coupling delta(z) that depends on a redshift z, both of which have simple parametrizations of the Hubble parameter to confront with observational data. We find that the combination of the three databases marginalized over a present dark energy density gives stringent constraints on the coupling, -0.08 < delta < 0.03 (95% CL) in the constant coupling model and -0.4 < delta_0 < 0.1 (95% CL) in the varying coupling model, where delta_0 is a present value. The uncoupled LambdaCDM model (w_X = -1 and delta = 0) still remains a good fit to the data, but the negative coupling (delta < 0) with the equation of state of dark energy w_X < -1 is slightly favoured over the LambdaCDM model.Comment: 9 pages, 7 figures, RevTeX, minor corrections, references added, accepted for publication in Phys. Rev.

    Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    Full text link
    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modelled by either a scalar field or by a barotropic fluid.The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models.The dark energy equation of state evolves differently in these classes.In freezing models, the equation of state deviates from that of a cosmological constant at early times.For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times.Since the dark energy equation of state evolves differently in these classes,the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model.In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the ISW effect.Comment: 11 pages, 6 figures, accepted for publication in Phys. Rev.

    Accelerating Universes with Scaling Dark Matter

    Get PDF
    Friedmann-Robertson-Walker universes with a presently large fraction of the energy density stored in an XX-component with wX<−1/3w_X<-1/3, are considered. We find all the critical points of the system for constant equations of state in that range. We consider further several background quantities that can distinguish the models with different wXw_X values. Using a simple toy model with a varying equation of state, we show that even a large variation of wXw_X at small redshifts is very difficult to observe with dL(z)d_L(z) measurements up to z∌1z\sim 1. Therefore, it will require accurate measurements in the range 1<z<21<z<2 and independent accurate knowledge of Ωm,0\Omega_{m,0} (and/or ΩX,0\Omega_{X,0}) in order to resolve a variable wXw_X from a constant wXw_X.Comment: submitted to IJMPD (uses Latex, 12 pages, 6 Figures) Minor corrections, Figures 4, 6 revised. Conclusions unchange

    Quantum effects, soft singularities and the fate of the universe in a braneworld cosmology

    Full text link
    We examine a class of braneworld models in which the expanding universe encounters a "quiescent" future singularity. At a quiescent singularity, the energy density and pressure of the cosmic fluid as well as the Hubble parameter remain finite while all derivatives of the Hubble parameter diverge (i.e., H˙{\dot H}, H¹{\ddot H}, etc. →∞\to \infty). Since the Kretschmann invariant diverges (RiklmRiklm→∞R_{iklm}R^{iklm} \to \infty) at the singularity, one expects quantum effects to play an important role as the quiescent singularity is approached. We explore the effects of vacuum polarization due to massless conformally coupled fields near the singularity and show that these can either cause the universe to recollapse or, else, lead to a softer singularity at which HH, H˙{\dot H}, and H¹{\ddot H} remain finite while {\dddot H} and higher derivatives of the Hubble parameter diverge. An important aspect of the quiescent singularity is that it is encountered in regions of low density, which has obvious implications for a universe consisting of a cosmic web of high and low density regions -- superclusters and voids. In addition to vacuum polarization, the effects of quantum particle production of non-conformal fields are also likely to be important. A preliminary examination shows that intense particle production can lead to an accelerating universe whose Hubble parameter shows oscillations about a constant value.Comment: 19 pages, 3 figures, text slightly improved and references added. Accepted for publication in Classical and Quantum Gravit

    Statefinder diagnostic in a torsion cosmology

    Full text link
    We apply the statefinder diagnostic to the torsion cosmology, in which an accounting for the accelerated universe is considered in term of a Riemann-Cartan geometry: dynamic scalar torsion. We find that there are some typical characteristic of the evolution of statefinder parameters for the torsion cosmology that can be distinguished from the other cosmological models. Furthermore, we also show that statefinder diagnostic has a direct bearing on the critical points. The statefinder diagnostic divides the torsion parameter a1a_1 into differential ranges, which is in keeping with the requirement of dynamical analysis. In addition, we fit the scalar torsion model to ESSENCE supernovae data and give the best fit values of the model parameters.Comment: 18 pages, 15 figures, accepted paper in JCA

    APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND

    Get PDF
    A proposal is made to test Newton's inverse-square law using the perihelion shift of test masses (planets) in free fall within a spacecraft located at the Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will operate in a drag-free environment with controlled experimental conditions and minimal interference from terrestrial sources of contamination. We demonstrate that such a space experiment can probe the presence of a "hidden" fifth dimension on the scale of a micron, if the perihelion shift of a "planet" can be measured to sub-arc-second accuracy. Some suggestions for spacecraft design are made.Comment: 17 pages, revtex, references added. To appear in Special issue of IJMP
    • 

    corecore