8 research outputs found
Familial Aggregation of High Tumor Necrosis Factor Alpha Levels in Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) patients frequently have high circulating tumor necrosis factor alpha (TNF-α) levels. We explored circulating TNF-α levels in SLE families to determine whether high levels of TNF-α were clustered in a heritable pattern. We measured TNF-α in 242 SLE patients, 361 unaffected family members, 23 unaffected spouses of SLE patients, and 62 unrelated healthy controls. Familial correlations and relative recurrence risk rates for the high TNF-α trait were assessed. SLE-affected individuals had the highest TNF-α levels, and TNF-α was significantly higher in unaffected first degree relatives than healthy unrelated subjects (P=0.0025). No Mendelian patterns were observed, but 28.4% of unaffected first degree relatives of SLE patients had high TNF-α levels, resulting in a first degree relative recurrence risk of 4.48 (P=2.9×10-5). Interestingly, the median TNF-α value in spouses was similar to that of the first degree relatives. Concordance of the TNF-α trait (high versus low) in SLE patients and their spouses was strikingly high at 78.2%. These data support a role for TNF-α in SLE pathogenesis, and TNF-α levels may relate with heritable factors. The high degree of concordance in SLE patients and their spouses suggests that environmental factors may also play a role in the observed familial aggregation
Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.
Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE
Increased pretreatment serum IFN-beta/alpha ratio predicts non-response to tumour necrosis factor alpha inhibition in rheumatoid arthritis
OBJECTIVE: Studies suggest that circulating type I interferon (IFN) may predict response to biological agents in rheumatoid arthritis (RA). Prediction of response prior to initiating therapy would represent a major advancement. METHODS: We studied sera from a test set of 32 patients with RA from the Auto-immune Biomarkers Collaborative Network Consortium and a validation set of 92 patients with RA from the Treatment Efficacy and Toxicity in Rheumatoid Arthritis Database and Repository registry. The test set included those with good response or no response to tumour necrosis factor (TNF) inhibitors at 14 weeks by European League Against Rheumatism criteria. The validation set included subjects with good, moderate or no response at 12 weeks. Total serum type I IFN activity, IFN-alpha and IFN-beta activity were measured using a functional reporter cell assay. RESULTS: In the test set, an increased ratio of IFN-beta to IFN-alpha (IFN-beta/alpha activity ratio) in pretreatment serum associated with lack of response to TNF inhibition (p=0.013). Anti-cyclic citrullinated peptide antibody titre and class of TNF inhibitor did not influence this relationship. A receiver-operator curve supported a ratio of 1.3 as the optimal cut-off. In the validation set, subjects with an IFN-beta/alpha activity ratio \u3e1.3 were significantly more likely to have non-response than good response (OR=6.67, p=0.018). The test had 77% specificity and 45% sensitivity for prediction of non-response compared with moderate or good response. Meta-analysis of test and validation sets confirmed strong predictive capacity of IFN-beta/alpha activity ratio (p=0.005). CONCLUSIONS: Increased pretreatment serum IFN-beta/alpha ratio strongly associated with non-response to TNF inhibition. This study supports further investigation of serum type I IFN in predicting outcome of TNF inhibition in RA