1,856 research outputs found

    Simulations of the merging galaxy cluster Abell 3376

    Full text link
    Observed galaxy clusters often exhibit X-ray morphologies suggestive of recent interaction with an infalling subcluster. Abell 3376 is a nearby (z=0.046) massive galaxy cluster whose bullet-shaped X-ray emission indicates that it may have undergone a recent collision. It displays a pair of Mpc-scale radio relics and its brightest cluster galaxy is located 970 h_70^-1 kpc away from the peak of X-ray emission, where the second brightest galaxy lies. We attempt to recover the dynamical history of Abell 3376. We perform a set of N-body adiabatic hydrodynamical simulations using the SPH code Gadget-2. These simulations of binary cluster collisions are aimed at exploring the parameter space of possible initial configurations. By attempting to match X-ray morphology, temperature, virial mass and X-ray luminosity, we set approximate constraints on some merger parameters. Our best models suggest a collision of clusters with mass ratio in the range 1/6-1/8, and having a subcluster with central gas density four times higher than that of the major cluster. Models with small impact parameter (b<150 kpc), if any, are preferred. We estimate that Abell 3376 is observed approximately 0.5 Gyr after core passage, and that the collision axis is inclined by i~40 degrees with respect to the plane of the sky. The infalling subcluster drives a supersonic shock wave that propagates at almost 2600 km/s, implying a Mach number as high as M~4; but we show how it would have been underestimated as M~3 due to projection effects.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Anderson localization on the Falicov-Kimball model with Coulomb disorder

    Full text link
    The role of Coulomb disorder is analysed in the Anderson-Falicov-Kimball model. Phase diagrams of correlated and disordered electron systems are calculated within dynamical mean-field theory applied to the Bethe lattice, in which metal-insulator transitions led by structural and Coulomb disorders and correlation can be identified. Metallic, Mott insulator, and Anderson insulator phases, as well as the crossover between them are studied in this perspective. We show that Coulomb disorder has a relevant role in the phase-transition behavior as the system is led towards the insulator regime

    Galaxy cluster mergers as triggers for the formation of jellyfish galaxies: case study of the A901/2 system

    Get PDF
    The A901/2 system is a rare case of galaxy cluster interaction, in which two galaxy clusters and two smaller groups are seen in route of collision with each other simultaneously. Within each of the four substructures, several galaxies with features indicative of jellyfish morphologies have been observed. In this paper, we propose a hydrodynamic model for the merger as a whole, compatible with its diffuse X-ray emission, and correlate the gas properties in this model with the locations of the jellyfish galaxy candidates in the real system. We find that jellyfish galaxies seem to be preferentially located near a boundary inside each subcluster where diffuse gas moving along with the subcluster and diffuse gas from the remainder of the system meet. The velocity change in those boundaries is such that a factor of up to \sim1000 increase in the ram pressure takes place within a few hundred kpc, which could trigger the high rate of gas loss necessary for a jellyfish morphology to emerge. A theoretical treatment of ram pressure stripping in the environment of galaxy cluster mergers has not been presented in the literature so far; we propose that this could be a common scenario for the formation of jellyfish morphologies in such systems.Comment: Accepted for publication in MNRAS. 10 pages, 9 figure
    corecore