11 research outputs found

    Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy.

    Get PDF
    BACKGROUND: Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. METHODS: Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. RESULTS: The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. CONCLUSION: Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common

    Importance of metallothioneins in the cadmium detoxification process in Daphnia magna

    No full text
    International audienceGood knowledge of the relationship between toxic metals and biological systems, particularly the sub-cellular fraction, could be a suitable early indicator of toxic effects. These effects and the sub-cellular behaviour of cadmium were studied with a widely used species in freshwater toxicity bioassays, Daphnia magna. In spite of this very commonplace usage in ecotoxicological studies, very few data are available on its toxicant metabolism and in particular metal homeostasis. Combining multi-tools analysis, a soluble protein was found: it is heat-stable, rich in sulfhydryl groups (differential pulse polarography), characterised by a molecular mass of approximately 6.5 kDa, with a G-75 chromatographic profile corresponding to the rabbit metallothioneins monomer, with few if any aromatic-containing amino acids, it binds metals (e.g. Cd, Cu), and its concentration increases with Cd exposure. This evidence led us to hypothesise that metallothioneins (MTs) are present in D. magna. Up to 75% of the Cd body burden with Cd exposure is bound to the MTs fraction. The increase in the Cd concentration in the surrounding medium and concomitantly in daphnids induces sub-cellular reorganisation of essential metals such as Cu and Zn. The rate of metals in the soluble cellular fraction and associated with MTs increases with the Cd body burden. Monitoring sub-cellular distribution of metals after exposure in the natural environment could be very useful for ecotoxicological assessment

    The regulatory effects of whey retentate from Bifidobacteria fermented milk on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME)

    No full text
    Aims: To investigate the effects of whey retentate from Bifidobacteria fermented milk. Methods and Results: The simulator of the human intestinal microbial ecosystem (SHIME) was used. The composition of the microbiota and its metabolic activities were analysed. Changes in the microbial composition became apparent within 15 days of the treatment in the vessels representing the ileum and the large intestine. The whey retentate favoured the growth of endogenous bifidobacteria and induced a decrease in Bacteroides fragilis and in sulfipho-reducing clostridia, especially Clostridium perfringens. After the administration was stopped, these populations tended to revert to their original levels, except for the streptococci and the staphylococci populations. The treatment also led to an increase in acetic acid, CH4 and CO2 production, suggesting overgrowth of some anaerobic bacteria. Ammonium, generally considered as undesirable, declined. Conclusions: The whey retentate clearly altered the microbial community in the SHIME. Significance and Impact of the Study: Whey retentate appears to exert a beneficial effect on the in vitro gastrointestinal system; these findings warrant confirmation by in vivo studies
    corecore