62 research outputs found

    Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin

    Get PDF
    Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA

    Comparative analysis of an experimental subcellular protein localization assay and in silico prediction methods

    Get PDF
    The subcellular localization of a protein can provide important information about its function within the cell. As eukaryotic cells and particularly mammalian cells are characterized by a high degree of compartmentalization, most protein activities can be assigned to particular cellular compartments. The categorization of proteins by their subcellular localization is therefore one of the essential goals of the functional annotation of the human genome. We previously performed a subcellular localization screen of 52 proteins encoded on human chromosome 21. In the current study, we compared the experimental localization data to the in silico results generated by nine leading software packages with different prediction resolutions. The comparison revealed striking differences between the programs in the accuracy of their subcellular protein localization predictions. Our results strongly suggest that the recently developed predictors utilizing multiple prediction methods tend to provide significantly better performance over purely sequence-based or homology-based predictions

    Evidence for Regulated Interleukin-4 Expression in Chondrocyte-Scaffolds under In Vitro Inflammatory Conditions

    Get PDF
    OBJECTIVE: To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions. METHODS: Mature articular chondrocytes from dogs (n = 3) were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive) or pCOX-2.cIL-4 (cytokine-responsive) plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS®) to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc) IL-1β (100 ng/ml) plus rcTNFα (50 ng/ml) in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic) properties of cIL-4. RESULTS: cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE(2) in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable). Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and promoter-independent. CONCLUSIONS: Regulated expression of therapeutic candidate gene(s) coupled with suitable scaffold(s) could potentially serve as a useful tissue-engineering tool to devise future treatment strategies for osteoarthritis

    Il-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis.

    No full text
    Item does not contain fulltextInterleukin-4, which has been contemplated for the treatment of rheumatoid arthritis and/or osteoarthritis because of its anticatabolic properties, has also been shown to modulate apoptosis. Because inadequate apoptosis is thought to contribute to synovial hyperplasia, we have investigated the ability of IL-4 and other Th2 cytokines to protect human synovial cells from apoptosis. Human synoviocytes or synovial explants were pretreated with IL-4, IL-10, and IL-13 before exposure to NO donor sodium-nitro-prusside (SNP). Apoptosis was evaluated by microscopy, annexin V-FITC, 3-(4,5-dimethylthiazol-2-gl)-5-(3-carboxymethoxylphenyl)-2-(4-sulphophenyl -2H: tetrazolium inner salt (MTS) test, pulse field gel electrophoresis, and a method proposed in this study based on (32)P Klenow end labeling of high m.w. DNA. Pretreatment by IL-4 or IL-13, but not IL-10, protected human synoviocytes from apoptosis induced by SNP. Even at doses as high as 2 mM SNP, up to 86% and 56% protection was achieved, after IL-4 and IL-13 treatment, respectively. Cell survival was dependent on IL concentration. IL-4 and IL-13 also had antiapoptotic effects on SNP-treated human synovial explants. Effects of IL-4 and IL-13 varied in the presence of phosphatidylinositol-3 kinase and protein kinase C inhibitors, implying the involvement of these pathways in antiapoptotic signaling. Antiapoptotic effects were dramatically inhibited by LY294002, and partially by the protein kinase C inhibitor Go 6976, while insulin-like growth factor increased synoviocyte survival. The possibility that IL-4 and IL-13 may enhance synovial expansion in vivo by their antiapoptotic effects is discussed

    Are There Differences in Arteriovenous Fistulae Created for Hemodialysis between Nephrologists and Vascular Surgeons?

    No full text
    Many studies have reported insufficient support from surgical services, resulting in nephrologists creating arteriovenous fistulas in many centers. The aim of this study was to compare risk factors of arteriovenous fistula dysfunction in patients whose fistulas were created by nephrologists versus vascular surgeons. Methods: This was a retrospective, analytical study of interventions by nephrologists and vascular surgeons during a period of 15 years. Out of a total of 1,048 fistulas, 764 (72.9%) were created by nephrologists patients, while vascular surgeons were responsible for 284 (27.1%) fistulae. Laboratory, demographic, and clinical parameters which might affect functioning of these arteriovenous fistulae were analyzed. Results: Patients whose arteriovenous fistula was formed by nephrologists differed significantly from those created by vascular surgeons in relation to the preventive character of the arteriovenous fistula (p = 0.011), lumen of the vein (p < 0.001) and systolic blood pressure (p = 0.047). Multivariate logistic regression of arteriovenous fistula dysfunction showed that risk factors were female gender (odds ratio [OR] = 1.56, 95% CI 1.16-2.07), whether the fistulae were created by vascular surgeons or nephrologists (OR = 1.38; 95% CI 1.01-1.89) and the site of the arteriovenous fistula (OR = 0.64; 95% CI 0.48-0.85). Conclusions: Arteriovenous fistulae created by vascular surgeons, female gender, and the location are risk factors of dysfunction

    Acute-phase serum amyloid a in osteoarthritis: regulatory mechanism and proinflammatory properties

    Get PDF
    OBJECTIVE: To determine if serum amyloid A (A-SAA) could be detected in human osteoarthritic (OA) joints and further clarify if high A-SAA level in joints result from a local production or from a diffusion process from abnormally elevated plasma concentration. Regulatory mechanism of A-SAA expression and its pro-inflammatory properties were also investigated. METHODS: A-SAA levels in serum and synovial fluid of OA (n = 29) and rheumatoid arthritis (RA) (n = 27) patients were measured and compared to matched-healthy volunteers (HV) (n = 35). In vitro cell cultures were performed on primary joint cells provided from osteoarthritis patients. Regulatory mechanisms were studied using Western-blotting, ELISA and lentiviral transfections. RESULTS: A-SAA was statistically increased in OA plasma patients compared to HV. Moreover, A-SAA level in OA plasma and synovial fluid increased with the Kellgren & Lauwrence grade. For all OA and RA patients, A-SAA plasma level was higher and highly correlated with its corresponding level in the synovial fluid, therefore supporting that A-SAA was mainly due to the passive diffusion process from blood into the joint cavity. However, A-SAA expression was also observed in vitro under corticosteroid treatment and/or under IL-1beta stimuli. A-SAA expression was down-regulated by PPAR-γ agonists (genistein and rosiglitazone) and up-regulated by TGF-β1 through Alk1 (Smad1/5) pathway. RhSAA induced proinflammatory cytokines (IL-6, IL-8, GRO-α and MCP-1) and metalloproteinases (MMP-1, MMP-3 and MMP-13) expression in FLS and chondrocytes, which expression was downregulated by TAK242, a specific TLR4 inhibitor. CONCLUSION: Systemic or local A-SAA expression inside OA joint cavity may play a key role in inflammatory process seen in osteoarthritis, which could be counteracted by TLR4 inhibition

    Genistein as a nature-derived PPAR agonist in adipogenesis and weight gain

    No full text
    Commentary on Zanella I, Di Lorenzo D. Intracellular receptor regulation of adipose metabolism by the isoflavone genistein. Eur J Nutr. 2015 Apr;54(3):493-5

    Genistein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts

    Full text link
    It was shown recently that synovial fibroblast transformation into adipocytes reduced the expression of interleukin-6 (IL-6) and IL-8. However, the synovial fibroblast adipogenesis was inhibited in inflammatory conditions induced by the tumor necrosis factor-alpha (TNF-alpha). Furthermore, adipogenesis is often accompanied by leptin production, a proinflammatory adipokine in rheumatic diseases. In this study, we tested the phytohormone genistein for adipogenic and anti-inflammatory properties on human synovial fibroblasts. Results showed that genistein was able to transform synovial fibroblasts into adipocytes that expressed perilipin-A and produced adiponectin, but not leptin. Furthermore, genistein enhanced glucocorticoid-mediated synovial fibroblast adipogenesis and, in parallel, downregulated glucocorticoid-induced leptin and leptin receptor. Endogenous and TNF-alpha-induced expressions of IL-6, IL-8, p38, p65 and C/EBP-beta were also downregulated by genistein, showing its anti-inflammatory properties. Peroxisome proliferator- activated receptor-gamma (PPAR-gamma) agonist, rosiglitazone, had a synergic effect on genistein-induced whereas the non-active tyrosine kinase inhibitor, daidzein, had a significantly inferior adipogenic activity than genistein. The Janus kinase-2 tyrosine kinase inhibitor, AG 490, mimicked the anti-leptin effect of genistein. These results showed that genistein-induced adipogenesis involves PPAR-gamma induction and tyrosine kinase inhibition. In conclusion, genistein, alone or coupled with glucocorticoids, have both adipogenic and anti-inflammatory effects on synovial fibroblasts
    corecore