119 research outputs found

    Replication profile of PCDH11X and PCDH11Y, a gene pair located in the non-pseudoautosomal homologous region Xq21.3/Yp11.2

    Get PDF
    In order to investigate the replication timing properties of PCDH11X and PCDH11Y, a pair of protocadherin genes located in the hominid-specific non-pseudoautosomal homologous region Xq21.3/Yp11.2, we conducted a FISH-based comparative study in different human and non-human primate (Gorilla gorilla) cell types. The replication profiles of three genes from different regions of chromosome X (ZFX, XIST and ATRX) were used as terms of reference. Particular emphasis was given to the evaluation of allelic replication asynchrony in relation to the inactivation status of each gene. The human cell types analysed include neuronal cells and ICF syndrome cells, considered to be a model system for the study of X inactivation. PCDH11 appeared to be generally characterized by replication asynchrony in both male and female cells, and no significant differences were observed between human and gorilla, in which this gene lacks X-Y homologous status. However, in differentiated human neuroblastoma and cerebral cortical cells PCDH11X replication profile showed a significant shift towards allelic synchrony. Our data are relevant to the complex relationship between X-inactivation, as a chromosome-wide phenomenon, and asynchrony of replication and expression status of single genes on chromosome X

    Therapeutic Effects of Liposome-Enveloped Ligusticum chuanxiong Essential Oil on Hypertrophic Scars in the Rabbit Ear Model

    Get PDF
    Hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, results from an overproduction of fibroblasts and excessive deposition of collagen. Although treatment with surgical excision or steroid hormones can modify the symptoms, numerous treatment-related complications have been described. In view of this, we investigated the therapeutic effects of essential oil (EO) from rhizomes of Ligusticum chuanxiong Hort. (Umbelliferae) on formed hypertrophic scars in a rabbit ear model. EO was prepared as a liposomal formulation (liposome-enveloped essential oil, LEO) and a rabbit ear model with hypertrophic scars was established. LEO (2.5, 5, and 10%) was applied once daily to the scars for 28 days. On postoperative day 56, the scar tissue was excised for masson's trichrome staining, detection of fibroblast apoptosis, assays of the levels of collagens I and III, and analysis of the mRNA expression of matrix metalloproteinase-1 (MMP-1), caspase-3 and -9, and transforming growth factor beta 1 (TGF-β1). In addition, the scar elevation index (SEI) was also determined. As a result, LEO treatment significantly alleviated formed hypertrophic scars on rabbit ears. The levels of TGF-β1, MMP-1, collagen I, and collagen III were evidently decreased, and caspase -3 and -9 levels and apoptosis cells were markedly increased in the scar tissue. SEI was also significantly reduced. Histological findings exhibited significant amelioration of the collagen tissue. These results suggest that LEO possesses the favorable therapeutic effects on formed hypertrophic scars in the rabbit ear model and may be an effective cure for human hypertrophic scars

    Klebsiella pneumoniae Multiresistance Plasmid pMET1: Similarity with the Yersinia pestis Plasmid pCRY and Integrative Conjugative Elements

    Get PDF
    Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria.The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1) gene and a perfect duplication of a 3-kbp region including the aac(6')-Ib, aadA1, and bla(OXA-9) genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31)), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1), an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31).The comparative analyses of pMET1 with pCRY, HPI(ECOR31), and ICE(Kp1 )show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains

    Aneuploidy and chromosomal instability in cancer: a jackpot to chaos

    Get PDF
    Genomic instability (GIN) is a hallmark of cancer cells that facilitates the acquisition of mutations conferring aggressive or drug-resistant phenotypes during cancer evolution. Chromosomal instability (CIN) is a form of GIN that involves frequent cytogenetic changes leading to changes in chromosome copy number (aneuploidy). While both CIN and aneuploidy are common characteristics of cancer cells, their roles in tumor initiation and progression are unclear. On the one hand, CIN and aneuploidy are known to provide genetic variation to allow cells to adapt in changing environments such as nutrient fluctuations and hypoxia. Patients with constitutive aneuploidies are more susceptible to certain types of cancers, suggesting that changes in chromosome copy number could positively contribute to cancer evolution. On the other hand, chromosomal imbalances have been observed to have detrimental effects on cellular fitness and might trigger cell cycle arrest or apoptosis. Furthermore, mouse models for CIN have led to conflicting results. Taken together these findings suggest that the relationship between CIN, aneuploidy and cancer is more complex than what was previously anticipated. Here we review what is known about this complex ménage à trois, discuss recent evidence suggesting that aneuploidy, CIN and GIN together promote a vicious cycle of genome chaos. Lastly, we propose a working hypothesis to reconcile the conflicting observations regarding the role of aneuploidy and CIN in tumorigenesis
    corecore