662 research outputs found
A Myelin Proteolipid Protein-LacZ Fusion Protein Is Developmentally Regulated and Targeted to the Myelin Membrane in Transgenic Mice
Transgenic mice were generated with a fusion gene carrying a portion of the murine myelin proteolipid protein (PLP) gene, including the first intron, fused to the E. coli LacZ gene. Three transgenic lines were derived and all lines expressed the transgene in central nervous system white matter as measured by a histochemical assay for the detection of β-galactosidase activity. PLP-LacZ transgene expression was regulated in both a spatial and temporal manner, consistent with endogenous PLP expression. Moreover, the transgene was expressed specifically in oligodendrocytes from primary mixed glial cultures prepared from transgenic mouse brains and appeared to be developmentally regulated in vitro as well. Transgene expression occurred in embryos, presumably in pre- or nonmyelinating cells, rather extensively throughout the peripheral nervous system and within very discrete regions of the central nervous system. Surprisingly, beta-galactosidase activity was localized predominantly in the myelin in these transgenic animals, suggesting that the NH_2-terminal 13 amino acids of PLP, which were present in the PLP-LacZ gene product, were sufficient to target the protein to the myelin membrane. Thus, the first half of the PLP gene contains sequences sufficient to direct both spatial and temporal gene regulation and to encode amino acids important in targeting the protein to the myelin membrane
Polarization Observations with the Cosmic Background Imager
We describe polarization observations of the CMBR with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from Llano de Chajnantour in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a steerable platform which can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers which sample multipoles from ℓ~400
to ℓ~4250. The instrumental polarization of the CBI was calibrated with 3C279, a bright polarized point source
which was monitored with the VLA
Contemporaneous VLBA 5 GHz Observations of Large Area Telescope Detected Blazars
The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA). In total, 232 sources were observed with the VLBA. Ninety sources that were previously observed as part of the VLBA Imaging and Polarimetry Survey (VIPS) have been included in the sample, as well as 142 sources not found in VIPS. This very large, 5 GHz flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong γ-ray emission. In particular, we see that γ-ray emission is related to strong, uniform magnetic fields in the cores of the host AGN. Included in this sample are non-blazar AGNs such as 3C84, M82, and NGC 6251. For the blazars, the total VLBA radio flux density at 5 GHz correlates strongly with γ-ray flux. The LAT BL Lac objects tend to be similar to the non-LAT BL Lac objects, but the LAT flat-spectrum radio quasars (FSRQs) are significantly different from the non-LAT FSRQs. Strong core polarization is significantly more common among the LAT sources, and core fractional polarization appears to increase during LAT detection
The properties of the gamma-ray blazars in the CJ-F VLBI sample
We present first results from the analysis of multi-epoch VLBI observations of the EGRET detected sources [9] in the CJ-F sample (Caltech Jodrell-Flat-spectrum, [10]). These objects form a subsample of 14 sources within the 293 AGN of the full CJ-F sample. 5 GHz VLBI snapshot observations of the CJ-F sources are continuously being performed in order to create a valid database for thorough statistical tests of pc-scale jet motion in AGN. All gamma-bright CJ-F AGN have been observed at least twice with the VLBA, which enables us to investigate jet component motions and paths. In particular, we concentrate on the analysis of those properties supposed to be essential for gamma-ray production, i.e., superluminal motion and bending. A paper discussing the possible relation between morphological changes and gamma-ray flaring/production is in preparation
Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey
The radio properties of blazars detected by the Large Area Telescope (LAT) on
board the Fermi Gamma-ray Space Telescope have been observed as part of the
VLBA Imaging and Polarimetry Survey (VIPS). This large, flux-limited sample of
active galactic nuclei (AGN) provides insights into the mechanism that produces
strong gamma-ray emission. At lower flux levels, radio flux density does not
directly correlate with gamma-ray flux. We find that the LAT-detected BL Lacs
tend to be similar to the non-LAT BL Lacs, but that the LAT-detected FSRQs are
often significantly different from the non-LAT FSRQs. The differences between
the gamma-ray loud and quiet FSRQs can be explained by Doppler boosting; these
objects appear to require larger Doppler factors than those of the BL Lacs. It
is possible that the gamma-ray loud FSRQs are fundamentally different from the
gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be
a signature for gamma-ray loud AGN.Comment: 32 pages, 9 figures, accepted by Ap
Morphological analysis of the cm-wave continuum in the dark cloud LDN1622
The spectral energy distribution of the dark cloud LDN1622, as measured by
Finkbeiner using WMAP data, drops above 30GHz and is suggestive of a Boltzmann
cutoff in grain rotation frequencies, characteristic of spinning dust emission.
LDN1622 is conspicuous in the 31 GHz image we obtained with the Cosmic
Background Imager, which is the first cm-wave resolved image of a dark cloud.
The 31GHz emission follows the emission traced by the four IRAS bands. The
normalised cross-correlation of the 31 GHz image with the IRAS images is higher
by 6.6sigma for the 12um and 25um bands than for the 60um and 100um bands:
C(12+25) = 0.76+/-0.02 and C(60+100) = 0.64+/-0.01.
The mid-IR -- cm-wave correlation in LDN 1622 is evidence for very small
grain (VSG) or continuum emission at 26-36GHz from a hot molecular phase. In
dark clouds and their photon-dominated regions (PDRs) the 12um and 25um
emission is attributed to stochastic heating of the VSGs. The mid-IR and
cm-wave dust emissions arise in a limb-brightened shell coincident with the PDR
of LDN1622, where the incident UV radiation from the Ori OB1b association heats
and charges the grains, as required for spinning dust.Comment: accepted for publication in ApJ - the complete article with
uncompressed figures may be downloaded from
http://www.das.uchile.cl/~simon/ftp/l1622.pd
Demonstration of magnetic field tomography with starlight polarization towards a diffuse sightline of the ISM
The availability of large datasets with stellar distance and polarization
information will enable a tomographic reconstruction of the
(plane-of-the-sky-projected) interstellar magnetic field in the near future. We
demonstrate the feasibility of such a decomposition within a small region of
the diffuse ISM. We combine measurements of starlight (R-band) linear
polarization obtained using the RoboPol polarimeter with stellar distances from
the second Gaia data release. The stellar sample is brighter than 17 mag in the
R band and reaches out to several kpc from the Sun. HI emission spectra reveal
the existence of two distinct clouds along the line of sight. We decompose the
line-of-sight-integrated stellar polarizations to obtain the mean polarization
properties of the two clouds. The two clouds exhibit significant differences in
terms of column density and polarization properties. Their mean
plane-of-the-sky magnetic field orientation differs by 60 degrees. We show how
our tomographic decomposition can be used to constrain our estimates of the
polarizing efficiency of the clouds as well as the frequency dependence of the
polarization angle of polarized dust emission. We also demonstrate a new method
to constrain cloud distances based on this decomposition. Our results represent
a preview of the wealth of information that can be obtained from a tomographic
map of the ISM magnetic field.Comment: 25 pages, 14 figures, published in ApJ, data appear in journa
Radio to gamma-ray variability study of blazar S5 0716+714
We present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ~350 days. Episodes of fast variability recur on time scales of ~60−70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field B_eq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. Theoptical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods
Filling in the Gaps in the 4.85 GHz Sky
We describe a 4.85 GHz survey of bright, flat-spectrum radio sources
conducted with the Effelsberg 100 m telescope in an attempt to improve the
completeness of existing surveys, such as CRATES. We report the results of
these observations and of follow-up 8.4 GHz observations with the VLA of a
subset of the sample. We comment on the connection to the WMAP point source
catalog and on the survey's effectiveness at supplementing the CRATES sky
coverage.Comment: 13 pages, 3 figures, 2 tables. Accepted for publication in the
Astronomical Journal. Tables available in electronic form:
http://astro.stanford.edu/gaps
- …
