1,734 research outputs found

    On the Schwarzschild-de Sitter metric of nonlocal de Sitter gravity

    Full text link
    Earlier constructed a simple nonlocal de Sitter gravity model has a cosmological solution in a very good agreement with astronomical observations. In this paper, we continue the investigation of the nonlocal de Sitter model of gravity, focusing on finding an appropriate solution for the Schwarzschild-de Sitter metric. We succeeded to solve the equations of motion in a certain approximation. The obtained approximate solution is of particular interest for examining the possible role of non-local de Sitter gravity in describing the effects in galactic dynamics that are usually attributed to dark matter.Comment: 10 page

    Electrical and Optical Simulation of Tris(8-hydroxyquinoline) Aluminium-Based Microcavity Organic Light Emitting Diode (MOLED)

    Get PDF
    A detailed examination of the emitted radiation spectrum from tris(8-hydroxyquinoline) aluminum (Alq) based OLEDs on optical and electrical models have been presented. The OLED structure is examined as a function of choice of anode material and position of the NPB/Alq interface. The simulation results have been compared to those obtained from experiments, showing good agreement in both electrical and optical characteristics. The enhancement in light emission by aligning antinode of the stand wave pattern with effective carrier recombination region has been observed

    Device optimization Based on Electrical and Optical Simulation of Tris(8-hydroxyquinoline) Aluminium Based Microacavity Organic Light Emitting Diode (MOLED)

    Get PDF
    OLED has emerged as a potential candidate for applications in display devices due to its prominent advantages in size, brightness and wide viewing angle. Following our previous work, where optical analysis of the OLED has been documented1 we present in this work detailed examination optical and electrical analysis of the performance of an OLEDs based on two organic layers: N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as the hole transport layer and tris (8-hydroxyquinoline) aluminium (Alq3) as the emitting layer, and two metallic mirrors. Our optical model fully takes into account dispersion in glass substrate, organic layers as well as the dispersion in metal contacts/mirrors. Influence of the incoherent transparent glass substrate is also accounted for. Two metal contacts Ag and Cu have been considered for anode and cathode respectively. For the hole transport layer NPB was used. The OLED structure is examined as a function of: thickness of the organic layers, and position of the hole transport layer/Alq3 interface. In order to obtain better agreement with EL experimental data, electrical models was developed in conjunction with the existing optical model to facilitate accurate optimisation of the OLED structure. The electrical model developed considers the metal contact as Schottky contact, the carrier mobility is taken to be field dependent with the Poole-Frenkel-like form and Langevin recombination model is used. The carrier transport was simulated using one-dimensional time-independent drift-diffusion model using device simulation software ATLAS.2 Finally, the optimised devices were fabricated and characterised and experimental and calculated optical emission spectra were compared together with results obtained from electrical transport model

    Extraordinary neoteny of synaptic spines in the human prefrontal cortex

    Get PDF
    The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature 264:705-712]. The largest number of supranumerary synapses has been recorded in the cerebral cortex of human and nonhuman primates. It is generally accepted that synaptic pruning in the cerebral cortex, including prefrontal areas, occurs at puberty and is completed during early adolescence [Huttenlocher PR, et al. (1979) Brain Res 163:195-205]. In the present study we analyzed synaptic spine density on the dendrites of layer IIIC cortico-cortical and layer V cortico-subcortical projecting pyramidal neurons in a large sample of human prefrontal cortices in subjects ranging in age from newborn to 91 y. We confirm that dendritic spine density in childhood exceeds adult values by two- to threefold and begins to decrease during puberty. However, we also obtained evidence that overproduction and developmental remodeling, including substantial elimination of synaptic spines, continues beyond adolescence and throughout the third decade of life before stabilizing at the adult level. Such an extraordinarily long phase of developmental reorganization of cortical neuronal circuitry has implications for understanding the effect of environmental impact on the development of human cognitive and emotional capacities as well as the late onset of human-specific neuropsychiatric disorders
    • …
    corecore