1,030 research outputs found
Small-signal amplifier based on single-layer MoS2
In this Letter we demonstrate the operation of an analog small-signal
amplifier based on single-layer MoS2, a semiconducting analogue of graphene.
Our device consists of two transistors integrated on the same piece of
single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based
amplifiers to operate with a room temperature gain of 4. The amplifier
operation is demonstrated for the frequencies of input signal up to 2 kHz
preserving the gain higher than 1. Our work shows that MoS2 can effectively
amplify signals and that it could be used for advanced analog circuits based on
two-dimensional materials.Comment: Submitted version of the manuscrip
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Optoelectronics with electrically tunable PN diodes in a monolayer dichalcogenide
One of the most fundamental devices for electronics and optoelectronics is
the PN junction, which provides the functional element of diodes, bipolar
transistors, photodetectors, LEDs, and solar cells, among many other devices.
In conventional PN junctions, the adjacent p- and n-type regions of a
semiconductor are formed by chemical doping. Materials with ambipolar
conductance, however, allow for PN junctions to be configured and modified by
electrostatic gating. This electrical control enables a single device to have
multiple functionalities. Here we report ambipolar monolayer WSe2 devices in
which two local gates are used to define a PN junction exclusively within the
sheet of WSe2. With these electrically tunable PN junctions, we demonstrate
both PN and NP diodes with ideality factors better than 2. Under excitation
with light, the diodes show photodetection responsivity of 210 mA/W and
photovoltaic power generation with a peak external quantum efficiency of 0.2%,
promising numbers for a nearly transparent monolayer sheet in a lateral device
geometry. Finally, we demonstrate a light-emitting diode based on monolayer
WSe2. These devices provide a fundamental building block for ubiquitous,
ultra-thin, flexible, and nearly transparent optoelectronic and electronic
applications based on ambipolar dichalcogenide materials.Comment: 14 pages, 4 figure
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells
The recent advent of two-dimensional monolayer materials with tunable
optoelectronic properties and high carrier mobility offers renewed
opportunities for efficient, ultra-thin excitonic solar cells alternative to
those based on conjugated polymer and small molecule donors. Using
first-principles density functional theory and many-body calculations, we
demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with
commonly used acceptors such as PCBM fullerene or semiconducting carbon
nanotubes can provide excitonic solar cells with tunable absorber gap,
donor-acceptor interface band alignment, and power conversion efficiency, as
well as novel device architectures. For the case of CBN-PCBM devices, we
predict the limit of power conversion efficiencies to be in the 10 - 20% range
depending on the CBN monolayer structure. Our results demonstrate the
possibility of using monolayer materials in tunable, efficient, polymer-free
thin-film solar cells in which unexplored exciton and carrier transport regimes
are at play.Comment: 7 pages, 5 figure
The Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors
We present low temperature electrical transport experiments in five field
effect transistor devices consisting of monolayer, bilayer and trilayer MoS2
films, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal
that the electronic states in all films are localized well up to the room
temperature over the experimentally accessible range of gate voltage. This
manifests in two dimensional (2D) variable range hopping (VRH) at high
temperatures, while below \sim 30 K the conductivity displays oscillatory
structures in gate voltage arising from resonant tunneling at the localized
sites. From the correlation energy (T0) of VRH and gate voltage dependence of
conductivity, we suggest that Coulomb potential from trapped charges in the
substrate are the dominant source of disorder in MoS2 field effect devices,
which leads to carrier localization as well.Comment: 10 pages, 5 figures; ACS Nano (2011
Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers
In this article, we study the properties of metal contacts to single-layer
molybdenum disulfide (MoS2) crystals, revealing the nature of switching
mechanism in MoS2 transistors. On investigating transistor behavior as contact
length changes, we find that the contact resistivity for metal/MoS2 junctions
is defined by contact area instead of contact width. The minimum gate dependent
transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted
single-layer MoS2. These results reveal that MoS2 transistors are Schottky
barrier transistors, where the on/off states are switched by the tuning the
Schottky barriers at contacts. The effective barrier heights for source and
drain barriers are primarily controlled by gate and drain biases, respectively.
We discuss the drain induced barrier narrowing effect for short channel
devices, which may reduce the influence of large contact resistance for MoS2
Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013
Interlayer Registry Determines the Sliding Potential of Layered Metal Dichalcogenides: The case of 2H-MoS2
We provide a simple and intuitive explanation for the interlayer sliding
energy landscape of metal dichalcogenides. Based on the recently introduced
registry index (RI) concept, we define a purely geometrical parameter which
quantifies the degree of interlayer commensurability in the layered phase of
molybdenum disulphide (2HMoS2). A direct relation between the sliding energy
landscape and the corresponding interlayer registry surface of 2H-MoS2 is
discovered thus marking the registry index as a computationally efficient means
for studying the tribology of complex nanoscale material interfaces in the
wearless friction regime.Comment: 13 pages, 7 figure
Line Defects in Molybdenum Disulfide Layers
Layered molecular materials and especially MoS2 are already accepted as
promising candidates for nanoelectronics. In contrast to the bulk material, the
observed electron mobility in single-layer MoS2 is unexpectedly low. Here we
reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion
domains, where the layer changes its direction through a line defect. The line
defects are observed experimentally by atomic resolution TEM. The structures
were modeled and the stability and electronic properties of the defects were
calculated using quantum-mechanical calculations based on the
Density-Functional Tight-Binding method. The results of these calculations
indicate the occurrence of new states within the band gap of the semiconducting
MoS2. The most stable non-stoichiometric defect structures are observed
experimentally, one of which contains metallic Mo-Mo bonds and another one
bridging S atoms
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
Two-dimensional materials offer new opportunities for both fundamental
science and technological applications, by exploiting the electron spin. While
graphene is very promising for spin communication due to its extraordinary
electron mobility, the lack of a band gap restricts its prospects for
semiconducting spin devices such as spin diodes and bipolar spin transistors.
The recent emergence of 2D semiconductors could help overcome this basic
challenge. In this letter we report the first important step towards making 2D
semiconductor spin devices. We have fabricated a spin valve based on ultra-thin
(5 nm) semiconducting black phosphorus (bP), and established fundamental spin
properties of this spin channel material which supports all electrical spin
injection, transport, precession and detection up to room temperature (RT).
Inserting a few layers of boron nitride between the ferromagnetic electrodes
and bP alleviates the notorious conductivity mismatch problem and allows
efficient electrical spin injection into an n-type bP. In the non-local spin
valve geometry we measure Hanle spin precession and observe spin relaxation
times as high as 4 ns, with spin relaxation lengths exceeding 6 um. Our
experimental results are in a very good agreement with first-principles
calculations and demonstrate that Elliott-Yafet spin relaxation mechanism is
dominant. We also demonstrate that spin transport in ultra-thin bP depends
strongly on the charge carrier concentration, and can be manipulated by the
electric field effect
- …
