60,250 research outputs found

    A New Waveform Consistency Test for Gravitational Wave Inspiral Searches

    Get PDF
    Searches for binary inspiral signals in data collected by interferometric gravitational wave detectors utilize matched filtering techniques. Although matched filtering is optimal in the case of stationary Gaussian noise, data from real detectors often contains "glitches" and episodes of excess noise which cause filter outputs to ring strongly. We review the standard \chi^2 statistic which is used to test whether the filter output has appropriate contributions from several different frequency bands. We then propose a new type of waveform consistency test which is based on the time history of the filter output. We apply one such test to the data from the first LIGO science run and show that it cleanly distinguishes between true inspiral waveforms and large-amplitude false signals which managed to pass the standard \chi^2 test.Comment: 10 pages, 6 figures, submitted to Classical and Quantum Gravity for the proceedings of the Eighth Gravitational Wave Data Analysis Workshop (GWDAW-8

    Analytic Results for the Gravitational Radiation from a Class of Cosmic String Loops

    Full text link
    Cosmic string loops are defined by a pair of periodic functions a{\bf a} and b{\bf b}, which trace out unit-length closed curves in three-dimensional space. We consider a particular class of loops, for which a{\bf a} lies along a line and b{\bf b} lies in the plane orthogonal to that line. For this class of cosmic string loops one may give a simple analytic expression for the power γ\gamma radiated in gravitational waves. We evaluate γ\gamma exactly in closed form for several special cases: (1) b{\bf b} a circle traversed MM times; (2) b{\bf b} a regular polygon with NN sides and interior vertex angle π2πM/N\pi-2\pi M/N; (3) b{\bf b} an isosceles triangle with semi-angle θ\theta. We prove that case (1) with M=1M=1 is the absolute minimum of γ\gamma within our special class of loops, and identify all the stationary points of γ\gamma in this class.Comment: 15 pages, RevTex 3.0, 7 figures available via anonymous ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-1

    BRST quantization of the massless minimally coupled scalar field in de Sitter space (zero modes, euclideanization and quantization)

    Full text link
    We consider the massless scalar field on the four-dimensional sphere S4S^4. Its classical action S=12S4dV(ϕ)2S={1\over 2}\int_{S^4} dV (\nabla \phi)^2 is degenerate under the global invariance ϕϕ+constant\phi \to \phi + \hbox{constant}. We then quantize the massless scalar field as a gauge theory by constructing a BRST-invariant quantum action. The corresponding gauge-breaking term is a non-local one of the form SGB=12αV(S4dVϕ)2S^{\rm GB}={1\over {2\alpha V}}\bigl(\int_{S^4} dV \phi \bigr)^2 where α\alpha is a gauge parameter and VV is the volume of S4S^4. It allows us to correctly treat the zero mode problem. The quantum theory is invariant under SO(5), the symmetry group of S4S^4, and the associated two-point functions have no infrared divergence. The well-known infrared divergence which appears by taking the massless limit of the massive scalar field propagator is therefore a gauge artifact. By contrast, the massless scalar field theory on de Sitter space dS4dS^4 - the lorentzian version of S4S^4 - is not invariant under the symmetry group of that spacetime SO(1,4). Here, the infrared divergence is real. Therefore, the massless scalar quantum field theories on S4S^4 and dS4dS^4 cannot be linked by analytic continuation. In this case, because of zero modes, the euclidean approach to quantum field theory does not work. Similar considerations also apply to massive scalar field theories for exceptional values of the mass parameter (corresponding to the discrete series of the de Sitter group).Comment: This paper has been published under the title "Zero modes, euclideanization and quantization" [Phys. Rev. D46, 2553 (1992)

    Large Angular Scale CMB Anisotropy Induced by Cosmic Strings

    Full text link
    We simulate the anisotropy in the cosmic microwave background (CMB) induced by cosmic strings. By numerically evolving a network of cosmic strings we generate full-sky CMB temperature anisotropy maps. Based on 192192 maps, we compute the anisotropy power spectrum for multipole moments 20\ell \le 20. By comparing with the observed temperature anisotropy, we set the normalization for the cosmic string mass-per-unit-length μ\mu, obtaining Gμ/c2=1.050.20+0.35×106G\mu/c^2=1.05 {}^{+0.35}_{-0.20} \times10^{-6}, which is consistent with all other observational constraints on cosmic strings. We demonstrate that the anisotropy pattern is consistent with a Gaussian random field on large angular scales.Comment: 4 pages, RevTeX, two postscript files, also available at http://www.damtp.cam.ac.uk/user/defects/ to appear in Physical Review Letters, 23 September 199

    Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings

    Full text link
    We report on a current investigation of the anisotropy pattern induced by cosmic strings on the cosmic microwave background radiation (MBR). We have numerically evolved a network of cosmic strings from a redshift of Z=100Z = 100 to the present and calculated the anisotropies which they induce. Based on a limited number of realizations, we have compared the results of our simulations with the observations of the COBE-DMR experiment. We have obtained a preliminary estimate of the string mass-per-unit-length μ\mu in the cosmic string scenario.Comment: 8 pages of TeX - [Color] Postscript available by anonymous ftp at ftp://fnas08.fnal.gov:/pub/Publications/Conf-94-197-A, FERMILAB-Conf-94/197-

    Competition between charge and spin order in the tUVt-U-V extended Hubbard model on the triangular lattice

    Full text link
    Several new classes of compounds can be modeled in first approximation by electrons on the triangular lattice that interact through on-site repulsion UU as well as nearest-neighbor repulsion VV. This extended Hubbard model on a triangular lattice has been studied mostly in the strong coupling limit for only a few types of instabilities. Using the extended two-particle self consistent approach (ETPSC), that is valid at weak to intermediate coupling, we present an unbiased study of the density and interaction dependent crossover diagram for spin and charge density wave instabilities of the normal state at arbitrary wave vector. When UU dominates over VV and electron filling is large, instabilities are chiefly in the spin sector and are controlled mostly by Fermi surface properties. Increasing VV eventually leads to charge instabilities. In the latter case, it is mostly the wave vector dependence of the vertex that determines the wave vector of the instability rather than Fermi surface properties. At small filling, non-trivial instabilities appear only beyond the weak coupling limit. There again, charge density wave instabilities are favored over a wide range of dopings by large VV at wave vectors corresponding to (3)×(3)\sqrt(3) \times \sqrt(3) superlattice in real space. Commensurate fillings do not play a special role for this instability. Increasing UU leads to competition with ferromagnetism. At negative values of UU or VV, neglecting superconducting fluctuations, one finds that charge instabilities are favored. In general, the crossover diagram presents a rich variety of instabilities. We also show that thermal charge-density wave fluctuations in the renormalized classical regime can open a pseudogap in the single-particle spectral weight, just as spin or superconducting fluctuations

    Cosmic string loops and large-scale structure

    Get PDF
    We investigate the contribution made by small loops from a cosmic string network as seeds for large-scale structure formation. We show that cosmic string loops are highly correlated with the long-string network on large scales and therefore contribute significantly to the power spectrum of density perturbations if the average loop lifetime is comparable to or above one Hubble time. This effect further improves the large-scale bias problem previously identified in earlier studies of cosmic string models.Comment: 5 pages, 5 figure
    corecore