54 research outputs found
Multilevel convergence analysis of multigrid-reduction-in-time
This paper presents a multilevel convergence framework for
multigrid-reduction-in-time (MGRIT) as a generalization of previous two-grid
estimates. The framework provides a priori upper bounds on the convergence of
MGRIT V- and F-cycles, with different relaxation schemes, by deriving the
respective residual and error propagation operators. The residual and error
operators are functions of the time stepping operator, analyzed directly and
bounded in norm, both numerically and analytically. We present various upper
bounds of different computational cost and varying sharpness. These upper
bounds are complemented by proposing analytic formulae for the approximate
convergence factor of V-cycle algorithms that take the number of fine grid time
points, the temporal coarsening factors, and the eigenvalues of the time
stepping operator as parameters.
The paper concludes with supporting numerical investigations of parabolic
(anisotropic diffusion) and hyperbolic (wave equation) model problems. We
assess the sharpness of the bounds and the quality of the approximate
convergence factors. Observations from these numerical investigations
demonstrate the value of the proposed multilevel convergence framework for
estimating MGRIT convergence a priori and for the design of a convergent
algorithm. We further highlight that observations in the literature are
captured by the theory, including that two-level Parareal and multilevel MGRIT
with F-relaxation do not yield scalable algorithms and the benefit of a
stronger relaxation scheme. An important observation is that with increasing
numbers of levels MGRIT convergence deteriorates for the hyperbolic model
problem, while constant convergence factors can be achieved for the diffusion
equation. The theory also indicates that L-stable Runge-Kutta schemes are more
amendable to multilevel parallel-in-time integration with MGRIT than A-stable
Runge-Kutta schemes.Comment: 26 pages; 17 pages Supplementary Material
A physiologically based, multi-scale model of skeletal muscle structure and function
Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscleâs response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscleâs response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuummechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue
On a question of KĂŒlshammer for representations of finite groups in reductive groups
Acknowledgments. The authors acknowledge the financial support of EPSRC Grant EP/L005328/1, Marsden Grants UOC1009 and UOA1021, and the DFG-priority programme SPP1388 âRepresentation Theoryâ. We are grateful to the referee for helpful suggestions.Peer reviewedPostprin
- âŠ