2,166 research outputs found

    Estate Taxes--Inter Vivos Transfer with Possibility of Reversion

    Get PDF

    Zero sound in triplet-correlated superfluid neutron matter

    Full text link
    The linear response of a superfluid neutron liquid onto external vector field is studied for the case of ^{3}P_{2}-\,^{3}F_{2} pairing. The consideration is limited to the case when the wave-length of the perturbation is large as compared to the coherence length in the superfluid matter and the transferred energy is small in comparison with the gap amplitude. The obtained results are used to analyse the collisionless phonon-like excitations of the condensate of superfluid neutrons. In particular, we analyze the case of neutron condensation into the state with mj=0m_{j}=0 which is conventionally considered as the preferable one in the bulk matter of neutron stars. Zero sound (if it exists) is found to be anisotropic and undergoes strong decrement below some temperature threshold depending substantially on the intensity of Fermi-liquid interactions.Comment: 16 pages, 2 figure

    Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    Full text link
    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called "Particle Linear Theory" (PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects -- in the linear regime -- of N-body simulations for which initial conditions have been set-up using these different lattices.Comment: 9 pages, 4 figures and 4 tables. Minor corrections to match published versio

    The Dynamic Structure Factor of the 1D Bose Gas near the Tonks-Girardeau Limit

    Full text link
    While the 1D Bose gas appears to exhibit superfluid response under certain conditions, it fails the Landau criterion according to the elementary excitation spectrum calculated by Lieb. The apparent riddle is solved by calculating the dynamic structure factor of the Lieb-Liniger 1D Bose gas. A pseudopotential Hamiltonian in the fermionic representation is used to derive a Hartree-Fock operator, which turns out to be well-behaved and local. The Random-Phase approximation for the dynamic structure factor based on this derivation is calculated analytically and is expected to be valid at least up to first order in 1/γ1/\gamma, where γ\gamma is the dimensionless interaction strength of the model. The dynamic structure factor in this approximation clearly indicates a crossover behavior from the non-superfluid Tonks to the superfluid weakly-interacting regime, which should be observable by Bragg scattering in current experiments.Comment: 4 pages, 2 figures misprints in formulas correcte

    Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid

    Full text link
    We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature

    The healing mechanism for excited molecules near metallic surfaces

    Full text link
    Radiation damage prevents the ability to obtain images from individual molecules. We suggest that this problem can be avoided for organic molecules by placing them in close proximity with a metallic surface. The molecules will then quickly dissipate any electronic excitation via their coupling to the metal surface. They may therefore be observed for a number of elastic scattering events that is sufficient to determine their structure.Comment: 4 pages, 4 figures. Added reference

    Frequency dependent polarizability of small metallic grains

    Full text link
    We study the dynamic electronic polarizability of a single nano-scale spherical metallic grain using quantum mechanical approach. We introduce the model for interacting electrons bound in the grain allowing us numerically to calculate the frequency dependence of the polarizability of grains of different sizes. We show that within this model the main resonance peak corresponding to the surface plasmon mode is blue-shifted and some minor secondary resonances above and below the main peak exist. We study the behavior of blue shift as a function of grain size and compare our findings with the classical polarizability and with other results in the literature.Comment: 8 pages, 3 figure
    • …
    corecore