14 research outputs found

    GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is characterized by airway hyperresponsiveness (AHR) and allergic inflammation of the airways, driven by allergen-specific Th2 cells. The asthma phenotypes and especially AHR are sensitive to the presence and activity of regulatory T (Treg) cells in the lung. Glucocorticoid-induced tumor necrosis factor receptor (GITR) is known to have a co-stimulatory function on effector CD4<sup>+ </sup>T cells, rendering these cells insensitive to Treg suppression. However, the effects of GITR signaling on polarized Th1 and Th2 cell effector functions are not well-established. We sought to evaluate the effect of GITR signaling on fully differentiated Th1 and Th2 cells and to determine the effects of GITR activation at the time of allergen provocation on AHR and airway inflammation in a Th2-driven mouse model of asthma.</p> <p>Methods</p> <p>CD4<sup>+</sup>CD25<sup>- </sup>cells were polarized <it>in vitro </it>into Th1 and Th2 effector cells, and re-stimulated in the presence of GITR agonistic antibodies to assess the effect on IFNγ and IL-4 production. To evaluate the effects of GITR stimulation on AHR and allergic inflammation in a mouse asthma model, BALB/c mice were sensitized to OVA followed by airway challenges in the presence or absence of GITR agonist antibodies.</p> <p>Results</p> <p>GITR engagement potentiated cytokine release from CD3/CD28-stimulated Th2 but not Th1 cells <it>in vitro</it>. In the mouse asthma model, GITR triggering at the time of challenge induced enhanced airway hyperresponsiveness, serum IgE and <it>ex vivo </it>Th2 cytokine release, but did not increase BAL eosinophilia.</p> <p>Conclusion</p> <p>GITR exerts a differential effect on cytokine release of fully differentiated Th1 and Th2 cells <it>in vitro</it>, potentiating Th2 but not Th1 cytokine production. This effect on Th2 effector functions was also observed <it>in vivo </it>in our mouse model of asthma, resulting in enhanced AHR, serum IgE responses and Th2 cytokine production. This is the first report showing the effects of GITR activation on cytokine production by polarized primary Th1 and Th2 populations and the relevance of this pathway for AHR in mouse models for asthma. Our data provides crucial information on the mode of action of the GITR signaling, a pathway which is currently being considered for therapeutic intervention.</p

    Mouse genetic model for antigen-induced airway manifestations of asthma. B

    No full text
    Allergic asthma is a genetically complex disease characterized by allergen-specific immunoglobulin (Ig)E, eosinophilic inflammation of the lungs and airway hyper-responsiveness to bronchospasmogenic stimuli. In this study, we compared 13 recombinant congenic (RC) mouse strains in an ovalbumin model of allergic asthma. Different intensities and types of responses are observed throughout the RC strains. Intensities range from resistance to asthma in CcS05, to a very severe bronchoconstrictive reaction upon methacholine challenge for the parental STS strain. All strains show a 'modified' Th2 response except CcS14, which shows a 'true' Th2 response. When data from all strains are pooled, airway reactivity shows significant correlations with the serum Ig levels and the levels of interleukin (IL)-4, IL-5 and IL-13 in the broncho-alveolar lavage (BAL), at low dosage of methacholine (below 25 mg/ml), whereas at high dosage airway reactivity only correlates with BAL neutrophil levels. This indicates that at least two different mechanisms are involved in the airway reactivity to methacholine. None of these correlations can be found in every individual strain, which demonstrates that the asthma traits in this mouse model are genetically dissociated and that the loci can be genetically mapped

    Mouse genetic model for antigen-induced airway manifestations of asthma

    No full text
    Allergic asthma is a genetically complex disease characterized by allergen-specific immunoglobulin (Ig)E, eosinophilic inflammation of the lungs and airway hyper-responsiveness to bronchospasmogenic stimuli. In this study, we compared 13 recombinant congenic ( RC) mouse strains in an ovalbumin model of allergic asthma. Different intensities and types of responses are observed throughout the RC strains. Intensities range from resistance to asthma in CcS05, to a very severe bronchoconstrictive reaction upon methacholine challenge for the parental STS strain. All strains show a 'modified' Th2 response except CcS14, which shows a 'true' Th2 response. When data from all strains are pooled, airway reactivity shows significant correlations with the serum Ig levels and the levels of interleukin (IL)-4, IL-5 and IL-13 in the broncho-alveolar lavage (BAL), at low dosage of methacholine (below 25 mg/ml), whereas at high dosage airway reactivity only correlates with BAL neutrophil levels. This indicates that at least two different mechanisms are involved in the airway reactivity to methacholine. None of these correlations can be found in every individual strain, which demonstrates that the asthma traits in this mouse model are genetically dissociated and that the loci can be genetically mapped

    The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD.

    Get PDF
    Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated
    corecore