3,647 research outputs found

    The KELT-South Telescope

    Full text link
    The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26 degree by 26 degree fields around the southern sky, and targets stars in the range of 8 < V < 10 mag, searching for transits by Hot Jupiters. This paper describes the KELT-South system hardware and software and discusses the quality of the observations. We show that KELT-South is able to achieve the necessary photometric precision to detect transits of Hot Jupiters around solar-type main-sequence stars.Comment: 26 pages, 13 figure

    Development of the ARIES parachute system

    Get PDF
    The design and testing of a two-stage parachute system to recover a space telescope weighing up to 2000 pounds is described. The system consists of a 15-ft dia ribbon parachute reefed to 50% for 10 seconds and a 73-ft dia paraform or cross second stage reefed to 10% for 10 seconds. The results of eight drop tests and one operational rocket launched flight and recovery are presented. A successful operational recovery of a 1600-lb NASA space telescope was conducted. The payload was launched by a second stage Minuteman rocket to an altitude of about 300 miles above sea level

    Demystifying Kepler Data: A Primer for Systematic Artifact Mitigation

    Full text link
    The Kepler spacecraft has collected data of high photometric precision and cadence almost continuously since operations began on 2009 May 2. Primarily designed to detect planetary transits and asteroseismological signals from solar-like stars, Kepler has provided high quality data for many areas of investigation. Unconditioned simple aperture time-series photometry are however affected by systematic structure. Examples of these systematics are differential velocity aberration, thermal gradients across the spacecraft, and pointing variations. While exhibiting some impact on Kepler's primary science, these systematics can critically handicap potentially ground-breaking scientific gains in other astrophysical areas, especially over long timescales greater than 10 days. As the data archive grows to provide light curves for 10510^5 stars of many years in length, Kepler will only fulfill its broad potential for stellar astrophysics if these systematics are understood and mitigated. Post-launch developments in the Kepler archive, data reduction pipeline and open source data analysis software have occurred to remove or reduce systematic artifacts. This paper provides a conceptual primer for users of the Kepler data archive to understand and recognize systematic artifacts within light curves and some methods for their removal. Specific examples of artifact mitigation are provided using data available within the archive. Through the methods defined here, the Kepler community will find a road map to maximizing the quality and employment of the Kepler legacy archive.Comment: Accepted to PASP, 27 pages, 21 figure
    corecore