66,317 research outputs found
Linearly Solvable Stochastic Control Lyapunov Functions
This paper presents a new method for synthesizing stochastic control Lyapunov
functions for a class of nonlinear stochastic control systems. The technique
relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman
partial differential equation to a linear partial differential equation for a
class of problems with a particular constraint on the stochastic forcing. This
linear partial differential equation can then be relaxed to a linear
differential inclusion, allowing for relaxed solutions to be generated using
sum of squares programming. The resulting relaxed solutions are in fact
viscosity super/subsolutions, and by the maximum principle are pointwise upper
and lower bounds to the underlying value function, even for coarse polynomial
approximations. Furthermore, the pointwise upper bound is shown to be a
stochastic control Lyapunov function, yielding a method for generating
nonlinear controllers with pointwise bounded distance from the optimal cost
when using the optimal controller. These approximate solutions may be computed
with non-increasing error via a hierarchy of semidefinite optimization
problems. Finally, this paper develops a-priori bounds on trajectory
suboptimality when using these approximate value functions, as well as
demonstrates that these methods, and bounds, can be applied to a more general
class of nonlinear systems not obeying the constraint on stochastic forcing.
Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio
Visualization of the homogeneous charge compression ignition/controlled autoignition combustion process using two-dimensional planar laser-induced fluorescence imaging of formaldehyde
The paper reports an investigation into the HCCI/CAI combustion process using the two-dimensional PLIF technique. The PLIF of formaldehyde formed during the low-temperature reactions of HCCI/CAI combustion was exciting by a tunable dye laser at 355nm wavelength and detected by a gated ICCD camera. Times and locations of the two-stage autoignition of HCCI/CAI combustion were observed in a single cylinder optical engine for several fuel blends mixed with n-heptane and iso-octane. The results show, when pure n-heptane was used, the initial formation of formaldehyde and its subsequent burning were closely related to the start of the low temperature heat release stage and the start of the main heat release stage of HCCI combustion respectively. Meanwhile, it was found that the formation of formaldehyde was more affected by the charge temperature than by the fuel concentration. But its subsequent burning or the start of main heat release combustion toke place at those areas where both the fuel concentration and the charge temperature were sufficient high. As a result, it was found that the presence of stratified residual gases affected both the spatial location and the temporal site of autoignition in a HCCI/CAI combustion engine. All studied fuels were found having similar formaldehyde formation timings with n-heptane. This means that the presence of iso-octane did not affect the start of low temperature reactions apparently. However, the heat release during low temperature reaction was significantly reduced with the presence of iso-octane in the studied fuels. In addition, the presence of iso-octane retarded the start of the main combustion stage
Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor
Majority of today's fixed-pitch, electric-power quadrotors have short flight
endurance ( 1 hour) which greatly limits their applications. This paper
presents a design methodology for the construction of a long-endurance
quadrotor using variable-pitch rotors and a gasoline-engine. The methodology
consists of three aspects. Firstly, the rotor blades and gasoline engine are
selected as a pair, so that sufficient lift can be comfortably provided by the
engine. Secondly, drivetrain and airframe are designed. Major challenges
include airframe vibration minimization and power transmission from one engine
to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD
controller is tuned to facilitate preliminary flight tests. The methodology has
been verified by the construction and successful flight of our gasoline
quadrotor prototype, which is designed to have a flight time of 2 to 3 hours
and a maximum take-off weight of 10 kg.Comment: 6 page
Mobility-Aware Caching for Content-Centric Wireless Networks: Modeling and Methodology
As mobile services are shifting from "connection-centric" communications to
"content-centric" communications, content-centric wireless networking emerges
as a promising paradigm to evolve the current network architecture. Caching
popular content at the wireless edge, including base stations (BSs) and user
terminals (UTs), provides an effective approach to alleviate the heavy burden
on backhaul links, as well as lowering delays and deployment costs. In contrast
to wired networks, a unique characteristic of content-centric wireless networks
(CCWNs) is the mobility of mobile users. While it has rarely been considered by
existing works in caching design, user mobility contains various helpful side
information that can be exploited to improve caching efficiency at both BSs and
UTs. In this paper, we present a general framework on mobility-aware caching in
CCWNs. Key properties of user mobility patterns that are useful for content
caching will be firstly identified, and then different design methodologies for
mobility-aware caching will be proposed. Moreover, two design examples will be
provided to illustrate the proposed framework in details, and interesting
future research directions will be identified.Comment: 16 pages, 5 figures, to appear in IEEE Communications Magazin
- …
