192 research outputs found

    Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds

    Full text link

    Human cerebrospinal fluid monoclonal LGI1 autoantibodies increase neuronal excitability

    Get PDF
    OBJECTIVE: Leucine-rich glioma-inactivated 1 (LGI1) encephalitis is the second most common antibody-mediatedencephalopathy, but insight into the intrathecal B-cell autoimmune response, including clonal relationships, isotype dis-tribution, frequency, and pathogenic effects of single LGI1 antibodies, has remained limited. METHODS: We cloned, expressed, and tested antibodies from 90 antibody-secreting cells (ASCs) and B cells from thecerebrospinalfluid (CSF) of several patients with LGI1 encephalitis. RESULTS: Eighty-four percent of the ASCs and 21% of the memory B cells encoded LGI1-reactive antibodies, whereasreactivities to other brain epitopes were rare. All LGI1 antibodies were of IgG1, IgG2, or IgG4 isotype and had under-gone affinity maturation. Seven of the overall 26 LGI1 antibodies efficiently blocked the interaction of LGI1 with itsreceptor ADAM22 in vitro, and their mean LGI1 signal on mouse brain sections was weak compared to the remaining,non–ADAM22-competing antibodies. Nevertheless, both types of LGI1 antibodies increased the intrinsic cellular excit-ability and glutamatergic synaptic transmission of hippocampal CA3 neurons in slice cultures. Interpretation: Our data show that the patients’intrathecal B-cell autoimmune response is dominated by LGI1 anti-bodies and that LGI1 antibodies alone are sufficient to promote neuronal excitability, a basis of seizure generation.Fundamental differences in target specificity and antibody hypermutations compared to the CSF autoantibody reper-toire in N-methyl-D-aspartate receptor encephalitis underline the clinical concept that autoimmune encephalitides arevery distinct entities

    The regions within the N-terminus critical for human glucagon like peptide-1 receptor (hGLP-1R) cell Surface expression

    Get PDF
    The hGLP-1R is a target for the treatment of type 2 diabetes and belongs to the class B family of GPCRs. Like other class B GPCRs, the GLP-1R contains an N-terminal signal peptide (SP) and undergoes N-linked glycosylation, which are important for its trafficking and maturation. This study analysed the role of the SP, the hydrophobic region after the SP (HRASP), glycosylation and the conserved residues within the N-terminus in GLP-1R trafficking. HGLP-1R targeted to the cell surface showed no SP, and the SP deleted mutant, but not the mutants defective in SP cleavage, showed cell surface expression, demonstrating the importance of SP cleavage for hGLP-1R cell surface expression. The N-terminal deletions of hGLP-1R revealed that the HRASP, not the SP, is essential for cell surface expression of GLP-1R. Further, inhibition of hGLP-1R glycosylation prevented cell surface expression of the receptor. Mutation of Trp39, Tyr69 and Tyr88, which are required for agonist binding, in the GLP-1R abolished cell surface expression of the receptor independent of the SP cleavage or N-linked glycosylation. In conclusion, the N-terminus of hGLP-1R regulates receptor trafficking and maturation. Therefore this study provides insight into the role of hGLP-1R N-terminus on the receptor cell surface expression

    Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors

    Discovery of Dual-Action Membrane-Anchored Modulators of Incretin Receptors

    Get PDF
    The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function.Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G(7)]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7) into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7)]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes.These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target

    A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates

    Get PDF
    The glucagon (GCG) peptide family consists of GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from a common GCG precursor, and the glucose-dependent insulinotropic polypeptide (GIP). These peptides interact with cognate receptors, GCGR, GLP1R, GLP2R, and GIPR, which belong to the secretin-like G protein-coupled receptor (GPCR) family. We used bioinformatics to identify genes encoding a novel GCG-related peptide (GCRP) and its cognate receptor, GCRPR. The GCRP and GCRPR genes were found in representative tetrapod taxa such as anole lizard, chicken, and Xenopus, and in teleosts including medaka, fugu, tetraodon, and stickleback. However, they were not present in mammals and zebrafish. Phylogenetic and genome synteny analyses showed that GCRP emerged through two rounds of whole genome duplication (2R) during early vertebrate evolution. GCRPR appears to have arisen by local tandem gene duplications from a common ancestor of GCRPR, GCGR, and GLP2R after 2R. Biochemical ligand-receptor interaction analyses revealed that GCRP had the highest affinity for GCRPR in comparison to other GCGR family members. Stimulation of chicken, Xenopus, and medaka GCRPRs activated Gαs-mediated signaling. In contrast to chicken and Xenopus GCRPRs, medaka GCRPR also induced Gαq/11-mediated signaling. Chimeric peptides and receptors showed that the K(16)M(17)K(18) and G(16)Q(17)A(18) motifs in GCRP and GLP1, respectively, may at least in part contribute to specific recognition of their cognate receptors through interaction with the receptor core domain. In conclusion, we present novel data demonstrating that GCRP and GCRPR evolved through gene/genome duplications followed by specific modifications that conferred selective recognition to this ligand-receptor pair

    Spezifischer Inhibitor der Aminoacyl-TransferRNS-Synthese aus Erbsenkeimlingen

    No full text
    corecore