126 research outputs found

    Employers' and Employees' Understanding of Occupational Health and Safety Risks in Small Businesses: A Case Study

    Get PDF
    Many small businesses have hazardous work environments and exposures to significant occupational health and safety risks. Differences in understanding of risks by employers and employees are one of the factors leading to the hazardous work environment and risk exposures in small businesses. Employees generally describe ā€œthe tools of the tradeā€ as the sources of risks of accidents and injuries, whereas employers generally identify ā€œbad employeesā€ or ā€œbad luckā€ as the cause of accidents. It seems that employer and employees having the same or a shared understanding of occupational health and safety problems, their causal relations and the course of action is essential to remedy the work environment problems in the workplace. This paper describes a study that explores owner/managersā€™ and employeesā€™ understandings of occupational health and safety risks in small business workplaces within the framework of the Local Theory of Work Environment. A case study of an independently operated restaurant and cafĆ© in New Zealand employing 6ƂĀ­19 employees was undertaken.. Data was collected using participantƂĀ­asƂĀ­observer ethnographic observation of the workplace followed by semi structured interviews of the owner, a manager and more than fifty per cent of employees employed in the business. Preliminary findings based on interview data are reported in this paper. The results suggest that the owner/manager and employees mainly consider physical safety problems experienced by employees or food safety problems affecting the customers as the key work environment problems. The owner/manager and employees generally link common sense and breach of norms with the causal relation behind these problems. Social exchange and external certification, among others, are found to be prominent reasons for bringing to attention the perceived problems in the wider work environment context. Implicit individual element of action and explicit organizational element of action are recognised as the two courses of action remedying the occupational health and safety problems. Further studies can be directed at finding how a shared understanding of the OHS risks occurs and what influences this process

    Soil moisture measurement for agriculture

    Get PDF
    Chapter 2. Whilst infrastructure projects have often focused on improving the supply of water for agriculture, there has been much less focus on managing or reducing the agricultural water demand. The net effect of increasing supply, without managing demand, is that agricultural water (and energy) consumption increases, without necessarily increasing food production. Improved agricultural Water Use Efficiency (WUE) can help address this issue, as well as contributing to reducing the pressures on water resources (NITI Aayog 2019). This chapter outlines how recent improvements in large area measurement of soil moisture and the availability of high-resolution Soil Moisture Deficit information at a fine scale can provide actionable guidance to farmers. Practical methods, demonstrated in farm pilot studies, to manage irrigation demand are discussed, along with considerations of efficient irrigation methods, with the objective of improving WUE

    Employers' and Employees' Understanding of Occupational Health and Safety Risks in Small Businesses: A Case Study

    Get PDF
    Many small businesses have hazardous work environments and exposures to significant occupational health and safety risks. Differences in understanding of risks by employers and employees are one of the factors leading to the hazardous work environment and risk exposures in small businesses. Employees generally describe ā€œthe tools of the tradeā€ as the sources of risks of accidents and injuries, whereas employers generally identify ā€œbad employeesā€ or ā€œbad luckā€ as the cause of accidents. It seems that employer and employees having the same or a shared understanding of occupational health and safety problems, their causal relations and the course of action is essential to remedy the work environment problems in the workplace. This paper describes a study that explores owner/managersā€™ and employeesā€™ understandings of occupational health and safety risks in small business workplaces within the framework of the Local Theory of Work Environment. A case study of an independently operated restaurant and cafĆ© in New Zealand employing 6ƂĀ­19 employees was undertaken.. Data was collected using participantƂĀ­asƂĀ­observer ethnographic observation of the workplace followed by semi structured interviews of the owner, a manager and more than fifty per cent of employees employed in the business. Preliminary findings based on interview data are reported in this paper. The results suggest that the owner/manager and employees mainly consider physical safety problems experienced by employees or food safety problems affecting the customers as the key work environment problems. The owner/manager and employees generally link common sense and breach of norms with the causal relation behind these problems. Social exchange and external certification, among others, are found to be prominent reasons for bringing to attention the perceived problems in the wider work environment context. Implicit individual element of action and explicit organizational element of action are recognised as the two courses of action remedying the occupational health and safety problems. Further studies can be directed at finding how a shared understanding of the OHS risks occurs and what influences this process

    IN VITRO ANTICHOLINERGIC AND ANTIHISTAMINIC ACTIVITIES OF ACORUS CALAMUS LINN. LEAVES EXTRACTS

    Get PDF
    The present investigation was aimed at determining the effects of hexane, acetone, methanol and aqueous extracts of Acorus calamus leaves (ACHE, ACAE, ACME and ACAQE) on cholinergic and histaminic system using isolated frog rectus abdominis muscle and guinea pig ileum. A dose dependent potentiation of Ach response (anticholinesterase like effect) was found with ACAE and ACME at 0.25, 0.5, 0.75 and 1 mg/ml, but at higher dose of ACAE, ACME, ACAQE and ACHE (5, 20 mg/ml) inhibit the Ach response (antinicotinic effect). These results revealed biphasic effect of Acorus calamus leaves extracts on acetylcholine induced contractile response in isolated frog rectus abdominis muscle preparation (i.e. potentiation effect at lower dose and inhibitory effect at higher dose). Studies on isolated guinea pig ileum demonstrated antihistaminic effect in a dose dependent manner (100-1000 Āµg/ml) with ACAE, ACME and ACAQE. In addition, the dose dependent inhibition of Ach response (antimuscarinic effect) was observed with ACAE and ACME. In conclusion, Acorus calamus leaves extracts exerts antinicotinic, anticholinesterase like activities in isolated frog rectus abdominis muscle and antihistaminic, antimuscarinic effect in guinea pig ileum. It has been suggested that these observed activities can be further studied for therapeutic potential of Acorus calamus leaves in the treatment of cognitive disorders and asthma

    In Vivo Dynamics of the Musculoskeletal System Cannot Be Adequately Described Using a Stiffness-Damping-Inertia Model

    Get PDF
    Background: Visco-elastic properties of the (neuro-)musculoskeletal system play a fundamental role in the control of posture and movement. Often, these properties are described and identified using stiffness-damping-inertia (KBI) models. In such an approach, perturbations are applied to the (neuro-)musculoskeletal system and subsequently KBI-model parameters are optimized to obtain a best fit between simulated and experimentally observed responses. Problems with this approach may arise because a KBI-model neglects critical aspects of the real musculoskeletal system. Methodology/Principal Findings: The purpose of this study was to analyze the relation between the musculoskeletal properties and the stiffness and damping estimated using a KBI-model, to analyze how this relation is affected by the nature of the perturbation and to assess the sensitivity of the estimated stiffness and damping to measurement errors. Our analyses show that the estimated stiffness and damping using KBI-models do not resemble any of the dynamical parameters of the underlying system, not even when the responses are very accurately fitted by the KBI-model. Furthermore, the stiffness and damping depend non-linearly on all the dynamical parameters of the underlying system, influenced by the nature of the perturbation and the time interval over which the KBI-model is optimized. Moreover, our analyses predict a very high sensitivity of estimated parameters to measurement errors. Conclusions/Significance: The results of this study suggest that the usage of stiffness-damping-inertia models t

    Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes.</p> <p>Methods</p> <p>Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program.</p> <p>Results</p> <p>After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p < 0.01). The absolute change during landing in knee flexion for the Post-training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p < 0.001). Tibial rotation and the knee varus/valgus angle were not significantly different after training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p < 0.05).</p> <p>Conclusions</p> <p>The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.</p

    Modeling of the condyle elements within a biomechanical knee model

    Get PDF
    The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling of the condyle contact in the knee will lead to reproduction of the complex combination of flexion/extension, abduction/adduction and tibial rotation ob-served in the real knee? The model is composed by two anatomic segments, the tibia and the femur, whose characteristics are functions of the geometric and anatomic properties of the real bones. The biomechanical model characterization is developed under the framework of multibody systems methodologies using Cartesian coordinates. The type of approach used in the proposed knee model is the joint surface contact conditions between ellipsoids, represent-ing the two femoral condyles, and points, representing the tibial plateau and the menisci. These elements are closely fitted to the actual knee geometry. This task is undertaken by con-sidering a parameter optimization process to replicate experimental data published in the lit-erature, namely that by Lafortune and his co-workers in 1992. Then, kinematic data in the form of flexion/extension patterns are imposed on the model corresponding to the stance phase of the human gait. From the results obtained, by performing several computational simulations, it can be observed that the knee model approximates the average secondary mo-tion patterns observed in the literature. Because the literature reports considerable inter-individual differences in the secondary motion patterns, the knee model presented here is also used to check whether it is possible to reproduce the observed differences with reasonable variations of bone shape parameters. This task is accomplished by a parameter study, in which the main variables that define the geometry of condyles are taken into account. It was observed that the data reveal a difference in secondary kinematics of the knee in flexion ver-sus extension. The likely explanation for this fact is the elastic component of the secondary motions created by the combination of joint forces and soft tissue deformations. The proposed knee model is, therefore, used to investigate whether this observed behavior can be explained by reasonable elastic deformations of the points representing the menisci in the model.FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia (FCT) - PROPAFE ā€“ Design and Development of a Patello-Femoral Prosthesis (PTDC/EME-PME/67687/2006), DACHOR - Multibody Dynamics and Control of Hybrid Active Orthoses MIT-Pt/BSHHMS/0042/2008, BIOJOINTS - Development of advanced biological joint models for human locomotion biomechanics (PTDC/EME-PME/099764/2008)

    Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach

    Get PDF
    The purpose of this study was to develop a biomechanical model to estimate anterior tibial translation (ATT), anterior shear forces, and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. This model used electromyography (EMG), joint position, and force plate data as inputs to calculate ligament loading during stance phase. First, an EMG-driven model was used to calculate forces for the major muscles crossing the knee joint. The calculated muscle forces were used as inputs to a knee model that incorporated a kneeā€“ligament model in order to solve for ATT and ligament forces. The model took advantage of using EMGs as inputs, and could account for the abnormal muscle activation patterns of ACL-deficient gait. We validated our model by comparing the calculated results with previous in vitro, in vivo, and numerical studies of healthy and ACL-deficient knees, and this gave us confidence on the accuracy of our model calculations. Our model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. Although strong co-contraction of knee flexors was found to help restrain ATT in the ACL-deficient knee, it did not counteract the effect of ACL rupture. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope inclination in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees
    • ā€¦
    corecore