190 research outputs found

    Actin in the preprophase band of Allium cepa.

    Full text link

    Collective electrical oscillations of a diatom population induced by dark stress

    Get PDF
    Diatoms are photosynthetic microalgae, a group with a major environmental role on the planet due to the biogeochemical cycling of silica and global fixation of carbon. However, they can evolve into harmful blooms through a resourceful communication mechanism, not yet fully understood. Here, we demonstrate that a population of diatoms under darkness show quasi-periodic electrical oscillations, or intercellular waves. The origin is paracrine signaling, which is a feedback, or survival, mechanism that counteracts changes in the physicochemical environment. The intracellular messenger is related to Ca2+ ions since spatiotemporal changes in their concentration match the characteristics of the intercellular waves. Our conclusion is supported by using a Ca2+ channel inhibitor. The transport of Ca2+ ions through the membrane to the extracellular medium is blocked and the intercellular waves disappear. The translation of microalgae cooperative signaling paves the way for early detection and prevention of harmful blooms and an extensive range of stress-induced alterations in the aquatic ecosystem.Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/91518/2012, UID/Multi/04326/2013]; SNMB - INOV: Innovation for a more competitive shellfish sector; Operational Program (OP); European Union through the European Structural Funds and Investment Funds (FEEI); European Maritime and Fisheries Fund (EMFF)info:eu-repo/semantics/publishedVersio

    A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants.

    No full text
    The kinesin-like proteins (KLPs) are a large family of plus- or minus-end-directed microtubule motors important in intracellular transport, mitosis, meiosis, and development. However, relatively little is known about plant KLPs. We prepared an antibody against two peptides in the microtubule binding domain of an Arabidopsis KLP (KatAp) encoded by the KatA gene, one of a family of genes encoding KLPs whose motor domain is located near the C terminus of the polypeptide. Such KLPs typically move materials toward the minus end of microtubules. An immunoreactive band (Mr of 140,000) corresponding to KatAp was demonstrated with this antibody on immunoblots of Arabidopsis seedling extracts. During immunofluorescence localizations, the antibody produced weak, variable staining in the cytoplasm and nucleus of interphase Arabidopsis suspension cells but much stronger staining of the mitotic apparatus during division. Staining was concentrated near the midzone during metaphase and was retained there during anaphase. The phragmoplast was also stained. Similar localization patterns were seen in tobacco BY-2 cells. The antibody produced a single band (Mr of 130,000) in murine brain fractions prepared according to procedures that enrich for KLPs (binding to microtubules in the presence of AMP-PNP but not ATP). A similar fraction from carrot suspension cells yielded a cross-reacting polypeptide of similar apparent molecular mass. When dividing BY-2 cells were lysed in the presence of taxol and ATP, antibody staining moved rapidly toward the poles, supporting the presence of a minus-end motor. Movement did not occur without ATP, with AMP-PNP, or with ATP plus antibody. Our results indicate that the protein encoded by KatA, KatAp, is expressed in Arabidopsis and is specifically localized to the midzone of the mitotic apparatus and phragmoplast. A similar protein is also present in other species
    corecore