96 research outputs found

    A new clue to the transition mechanism between optical high and low states of the supersoft X-ray source RX J0513.9-6951, implied from the recurrent nova CI Aquilae 2000 outburst model

    Get PDF
    We have found a new clue to the transition mechanism between optical high/X-ray off and optical low/X-ray on states of the LMC supersoft X-ray source RX J0513.9-6951. A sharp ~1 mag drop is common to the CI Aql 2000 outburst. These drops are naturally attributed to cessation of optically thick winds on white dwarfs. A detailed light-curve analysis of CI Aql indicates that the size of a disk drastically shrinks when the wind stops. This causes ~1-2 mag drop in the optical light curve. In RX J0513.9-6951, the same mechanism reproduces sharp ~1 mag drop from optical high to low states. We predict this mechanism also works on the transition from low to high states. Interaction between the wind and the companion star attenuates the mass transfer and drives full cycles of low and high states.Comment: 9 pages including 5 figures, to appear in the Astrophysical Journa

    Six supersoft X-ray binaries: system parameters and twin-jet outflows

    Full text link
    A comparison is made between the properties of CAL 83, CAL 87, RX J0513.9-6951, 1E 0035.4-7230 (SMC 13), RX J0019.8+2156, and RX J0925.7-4758, all supersoft X-ray binaries. Spectra with the same resolution and wavelength coverage of these systems are compared and contrasted. Some new photometry is also presented. The equivalent widths of the principal emission lines of H and He II differ by more than an order of magnitude among these sources, although those of the highest ionization lines (e.g. O VI) are very similar. In individual systems, the velocity curves derived from various ions often differ in phasing and amplitude, but those whose phasing is consistent with the light curves (implying the lines are formed near the compact star) give masses of 1.2M\sim 1.2M_{\odot} and 0.5M\sim 0.5M_{\odot} for the degenerate and mass-losing stars, respectively. This finding is in conflict with currently prevailing theoretical models for supersoft binaries. The three highest luminosity sources show evidence of "jet" outflows, with velocities of 14×103km/s\sim 1-4 \times10^3 km/s. In CAL 83 the shape of the He II 4686\AA profile continues to show evidence that these jets may precess with a period of 69\sim 69 days.Comment: 27 pages including 5 tables, plus 6 figures. To appear in Ap

    WD + MS systems as the progenitor of SNe Ia

    Full text link
    We show the initial and final parameter space for SNe Ia in a (logPi,M2i\log P^{\rm i}, M_{\rm 2}^{\rm i}) plane and find that the positions of some famous recurrent novae, as well as a supersoft X-ray source (SSS), RX J0513.9-6951, are well explained by our model. The model can also explain the space velocity and mass of Tycho G, which is now suggested to be the companion star of Tycho's supernova. Our study indicates that the SSS, V Sge, might be the potential progenitor of supernovae like SN 2002ic if the delayed dynamical-instability model due to Han & Podsiadlowski (2006) is appropriate. Following the work of Meng, Chen & Han (2009), we found that the SD model (WD + MS) with an optically thick wind can explain the birth rate of supernovae like SN 2006X and reproduce the distribution of the color excess of SNe Ia. The model also predicts that at least 75% of all SNe Ia may show a polarization signal in their spectra.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics & Space Science (Proceeding of the 4th Meeting on Hot Subdwarf Stars and Related Objects, edited by Zhanwen Han, Simon Jeffery & Philipp Podsiadlowski

    The Density of Coronal Plasma in Active Stellar Coronae

    Get PDF
    We have analyzed high-resolution X-ray spectra of a sample of 22 active stars observed with the High Energy Transmission Grating Spectrometer on {\em Chandra} in order to investigate their coronal plasma density. Densities where investigated using the lines of the He-like ions O VII, Mg XI, and Si XIII. While Si XIII lines in all stars of the sample are compatible with the low-density limit, Mg XI lines betray the presence of high plasma densities (>1012> 10^{12} cm3^{-3}) for most of the sources with higher X-ray luminosity (>1030> 10^{30} erg/s); stars with higher LXL_X and LX/LbolL_X/L_{bol} tend to have higher densities at high temperatures. Ratios of O VII lines yield much lower densities of a few 101010^{10} cm3^{-3}, indicating that the ``hot'' and ``cool'' plasma resides in physically different structures. Our findings imply remarkably compact coronal structures, especially for the hotter plasma emitting the Mg XI lines characterized by coronal surface filling factor, fMgXIf_{MgXI}, ranging from 10410^{-4} to 10110^{-1}, while we find fOVIIf_{OVII} values from a few 10310^{-3} up to 1\sim 1 for the cooler plasma emitting the O VII lines. We find that fOVIIf_{OVII} approaches unity at the same stellar surface X-ray flux level as solar active regions, suggesting that these stars become completely covered by active regions. At the same surface flux level, fMgXIf_{MgXI} is seen to increase more sharply with increasing surface flux. These results appear to support earlier suggestions that hot 10710^7 K plasma in active coronae arises from flaring activity, and that this flaring activity increases markedly once the stellar surface becomes covered with active regions.Comment: 53 pages, 19 figures, accepted for publication in Astrophysical Journal. A version of the paper with higher quality figures is available from http://www.astropa.unipa.it/Library/preprint.htm

    Type Ia Supernova Explosion Models

    Get PDF
    Because calibrated light curves of Type Ia supernovae have become a major tool to determine the local expansion rate of the Universe and also its geometrical structure, considerable attention has been given to models of these events over the past couple of years. There are good reasons to believe that perhaps most Type Ia supernovae are the explosions of white dwarfs that have approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent progress in modeling Type Ia supernovae as well as several of the still open questions are addressed in this review. Although the main emphasis will be on studies of the explosion mechanism itself and on the related physical processes, including the physics of turbulent nuclear combustion in degenerate stars, we also discuss observational constraints.Comment: 38 pages, 4 figures, Annual Review of Astronomy and Astrophysics, in pres

    Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA

    Get PDF
    Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany

    Probable intermediate mass black holes in NGC4559: XMM-Newton spectral and timing constraints

    Full text link
    We have examined X-ray and optical observations of two ultra-luminous X-ray sources, X7 and X10 in NGC4559, using XMM-Newton, Chandra and HST. The UV/X-ray luminosity of X7 exceeds 2.1e40 erg/s in the XMM-Newton observation, and that of X10 is >1.3e40 erg/s. X7 has both thermal and power-law spectral components. The characteristic temperature of the thermal component is 0.12 keV. The power-law components in the two sources both have slopes with photon index \~2.1. A timing analysis of X7 indicates a break frequency at 28 mHz in the power spectrum, while that for X10 is consistent with an unbroken power law. The luminosity of the blackbody component in the X-ray spectrum of X7 and the nature of its time variability provides evidence that this object is an intermediate mass black hole accreting at sub-Eddington rates, but other scenarios which require high advection efficiencies from a hollowed-out disk might be possible. The emission from X10 can be characterised by a single power-law. This source can be interpreted either as an intermediate mass black hole, or as a stellar-mass black hole with relativistically-beamed Comptonised emission. There are four optical counterparts in the error circle of X7. No counterparts are evident in the error circle for X10.Comment: accepted for publication in MNRA

    The eclipsing supersoft X-ray binary CAL 87

    Full text link
    We present and discuss 25 spectra obtained in November 1996, covering all phases of the CAL 87 binary system. These spectra are superior both in signal-to-noise and wavelength coverage to previously published data so that additional spectral features can be measured. Photometry obtained on the same nights is used to confirm the ephemeris and to compare with light curves from previous years. Analysis of the color variation through the orbital cycle has been carried out using archival MACHO data. When a barely resolved red field star is accounted for, there is no (V-R)-color variation, even through eclipse. There have been substantial changes in the depth of minimum light since 1988; it has decreased more than 0.5 mag in the last several years. The spectral features and radial velocities are also found to vary not only through the 0.44-day orbit but also over timescales of a year or more. Possible interpretations of these long-term changes are discussed. The 1996 spectra contain phase-modulated Balmer absorption lines not previously seen, apparently arising in gas flowing from the region of the compact star. The changes in emission-line strengths with orbital phase indicate there are azimuthal variations in the accretion disk structures. Radial velocities of several lines give different amplitudes and phasing, making determination of the stellar masses difficult. All solutions for the stellar masses indicate that the companion star is considerably less massive than the degenerate star. The Balmer absorption-line velocities correspond to masses of ~1.4Msun for the degenerate star and ~0.4Msun for the mass donor. However, the strong He II emission lines indicate a much more massive accreting star, with Mx>4Msun.Comment: 18 pages including tables, plus10 figures. To appear in Ap
    corecore