10,899 research outputs found

    Bose-Einstein condensation in an optical lattice

    Full text link
    In this paper we develop an analytic expression for the critical temperature for a gas of ideal bosons in a combined harmonic lattice potential, relevant to current experiments using optical lattices. We give corrections to the critical temperature arising from effective mass modifications of the low energy spectrum, finite size effects and excited band states. We compute the critical temperature using numerical methods and compare to our analytic result. We study condensation in an optical lattice over a wide parameter regime and demonstrate that the critical temperature can be increased or reduced relative to the purely harmonic case by adjusting the harmonic trap frequency. We show that a simple numerical procedure based on a piecewise analytic density of states provides an accurate prediction for the critical temperature.Comment: 10 pages, 5 figure

    The binary mass transfer origin of the red blue straggler sequence in M30

    Get PDF
    Two separated sequences of blue straggler stars (BSSs) have been revealed by Ferraro et al. (2009) in the color-magnitude diagram (CMD) of the Milky Way globular cluster M30. Their presence has been suggested to be related to the two BSS formation channels (namely, collisions and mass-transfer in close binaries) operating within the same stellar system. The blue sequence was indeed found to be well reproduced by collisional BSS models. In contrast, no specific models for mass transfer BSSs were available for an old stellar system like M30. Here we present binary evolution models, including case-B mass transfer and binary merging, specifically calculated for this cluster. We discuss in detail the evolutionary track of a 0.9+0.5M0.9+0.5 M_\odot binary, which spends approximately 4 Gyr in the BSS region of the CMD of a 13 Gyr old cluster. We also run Monte-Carlo simulations to study the distribution of mass transfer BSSs in the CMD and to compare it with the observational data. Our results show that: (1) the color and magnitude distribution of synthetic mass transfer BSSs defines a strip in the CMD that nicely matches the observed red BSS sequence, thus providing strong support to the mass transfer origin for these stars; (2) the CMD distribution of synthetic BSSs never attains the observed location of the blue BSS sequence, thus reinforcing the hypothesis that the latter formed through a different channel (likely collisions); (3) most (60%\sim 60\%) of the synthetic BSSs are produced by mass-transfer models, while the remaining <40%< 40\% requires the contribution from merger models.Comment: 8 pages, 5 figures, accepted to Ap

    A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears

    Full text link
    Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front speeds provides an efficient tool for statistical speed analysis, as well as a fast and accurate method for speed computation. A variational principle based analysis is carried out on the ensemble of KPP speeds through spatially stationary random shear flows inside infinite channel domains. In the regime of small root mean square (rms) shear amplitude, the enhancement of the ensemble averaged KPP front speeds is proved to obey the quadratic law under certain shear moment conditions. Similarly, in the large rms amplitude regime, the enhancement follows the linear law. In particular, both laws hold for the Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic ensemble averaged speed formula is derived in the small rms regime and is explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational principle based computation agrees with these analytical findings, and allows further study on the speed enhancement distributions as well as the dependence of enhancement on the shear covariance. Direct simulations in the small rms regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in section

    Branching ratios and CP asymmetries of BKη()B \to K \eta^{(\prime)} decays in the pQCD approach

    Full text link
    We calculate the branching ratios and CP violating asymmetries of the four B \to K \etap decays in the perturbative QCD (pQCD) factorization approach. Besides the full leading order contributions, the partial next-to-leading order (NLO) contributions from the QCD vertex corrections, the quark loops, and the chromo-magnetic penguins are also taken into account. The NLO pQCD predictions for the CP-averaged branching ratios are Br(B+K+η)3.2×106Br(B^+ \to K^+ \eta) \approx 3.2 \times 10^{-6}, Br(B^\pm \to K^\pm \etar) \approx 51.0 \times 10^{-6}, Br(B0K0η)2.1×106Br(B^0 \to K^0 \eta) \approx 2.1 \times 10^{-6}, and Br(B^0 \to K^0 \etar) \approx 50.3 \times 10^{-6}. The NLO contributions can provide a 70% enhancement to the LO Br(B \to K \etar), but a 30% reduction to the LO Br(BKη)Br(B \to K \eta), which play the key role in understanding the observed pattern of branching ratios. The NLO pQCD predictions for the CP-violating asymmetries, such as \acp^{dir} (K^0_S \etar) \sim 2.3% and \acp^{mix}(K^0_S \etar)\sim 63%, agree very well with currently available data. This means that the deviation \Delta S=\acp^{mix}(K^0_S \etar) - \sin{2\beta} in pQCD approach is also very small.Comment: 31 pages, 11 ps/eps figures, typos corrected. A little modificatio

    The spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation

    Full text link
    It is believed that the modification of Newtonian dynamics (MOND) is possible alternate for dark matter hypothesis. Although Bekenstein's TeVeS supplies a relativistic version of MOND, one may still wish a more concise covariant formulism of MOND. In this paper, within covariant geometrical framwork, we present another version of MOND. We show the spacetime structure of MOND with properties of Tully-Fisher relation and Lorentz invariance violation.Comment: 6 pages. arXiv admin note: substantial text overlap with arXiv:1111.1383 and arXiv:1108.344

    Nucleation in scale-free networks

    Full text link
    We have studied nucleation dynamics of the Ising model in scale-free networks with degree distribution P(k)kγP(k)\sim k^{-\gamma} by using forward flux sampling method, focusing on how the network topology would influence the nucleation rate and pathway. For homogeneous nucleation, the new phase clusters grow from those nodes with smaller degree, while the cluster sizes follow a power-law distribution. Interestingly, we find that the nucleation rate RHomR_{Hom} decays exponentially with the network size NN, and accordingly the critical nucleus size increases linearly with NN, implying that homogeneous nucleation is not relevant in the thermodynamic limit. These observations are robust to the change of γ\gamma and also present in random networks. In addition, we have also studied the dynamics of heterogeneous nucleation, wherein ww impurities are initially added, either to randomly selected nodes or to targeted ones with largest degrees. We find that targeted impurities can enhance the nucleation rate RHetR_{Het} much more sharply than random ones. Moreover, ln(RHet/RHom)\ln (R_{Het}/R_{Hom}) scales as wγ2/γ1w^{\gamma-2/\gamma-1} and ww for targeted and random impurities, respectively. A simple mean field analysis is also present to qualitatively illustrate above simulation results.Comment: 7 pages, 5 figure

    Mutual selection in network evolution: the role of the intrinsic fitness

    Full text link
    We propose a new mechanism leading to scale-free networks which is based on the presence of an intrinsic character of a vertex called fitness. In our model, a vertex ii is assigned a fitness xix_i, drawn from a given probability distribution function f(x)f(x). During network evolution, with rate pp we add a vertex jj of fitness xjx_j and connect to an existing vertex ii of fitness xix_i selected preferentially to a linking probability function g(xi,xj)g(x_i,x_j) which depends on the fitnesses of the two vertices involved and, with rate 1p1-p we create an edge between two already existed vertices with fitnesses xix_i and xjx_j, with a probability also preferential to the connection function g(xi,xj)g(x_i,x_j). For the proper choice of gg, the resulting networks have generalized power laws, irrespective of the fitness distribution of vertices.Comment: ws-ijmpc.te

    Baryon production and net-proton distributions in relativistic heavy ion collisions

    Full text link
    The higher order moments of the net-baryon distributions in relativistic heavy ion collisions are useful probes for the QCD critical point and fluctuations. We study the net-proton distributions and their moments in a simple model which considers the baryon stopping and pair production effects in the processes. It is shown that a single emission source model can explain the experimental data well. Centrality and energy dependence of the distributions and higher moments is discussed.Comment: 5 pages in RevTex, 8 eps figures, to be appeared in PR
    corecore