55 research outputs found

    Sensitizing Protective Tumor Microenvironments to Antibody-Mediated Therapy

    Get PDF
    Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated malignancies. Here, we show that select microenvironments can underlie resistance to antibody-based therapy. Using a humanized model of treatment refractory B cell leukemia, we find that infiltration of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit engulfment of antibody-targeted tumor cells. Resistance to macrophage-mediated killing can be overcome by combination regimens involving therapeutic antibodies and chemotherapy. Specifically, the nitrogen mustard cyclophosphamide induces an acute secretory activating phenotype (ASAP), releasing CCL4, IL8, VEGF, and TNFα from treated tumor cells. These factors induce macrophage infiltration and phagocytic activity in the bone marrow. Thus, the acute induction of stress-related cytokines can effectively target cancer cells for removal by the innate immune system. This synergistic chemoimmunotherapeutic regimen represents a potent strategy for using conventional anticancer agents to alter the tumor microenvironment and promote the efficacy of targeted therapeutics.Massachusetts Institute of Technology. Ludwig Center for Molecular OncologyKathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyGerman Research Foundation (KFO286)German Research Foundation (Fellowship)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051

    Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies

    Get PDF
    Although numerous mouse models of B-cell malignancy have been developed via the enforced expression of defined oncogenic lesions, the feasibility of generating lineage-defined human B-cell malignancies using mice reconstituted with modified human hematopoietic stem cells (HSCs) remains unclear. In fact, whether human cells can be transformed as readily as murine cells by simple oncogene combinations is a subject of considerable debate. Here, we describe the development of humanized mouse model of MYC/BCL2-driven ‘double-hit’ lymphoma. By engrafting human HSCs transduced with the oncogene combination into immunodeficient mice, we generate a fatal B malignancy with complete penetrance. This humanized-MYC/BCL2-model (hMB) accurately recapitulates the histopathological and clinical aspects of steroid-, chemotherapy- and rituximab-resistant human ‘double-hit’ lymphomas that involve the MYC and BCL2 loci. Notably, this model can serve as a platform for the evaluation of antibody-based therapeutics. As a proof of principle, we used this model to show that the anti-CD52 antibody alemtuzumab effectively eliminates lymphoma cells from the spleen, liver and peripheral blood, but not from the brain. The hMB humanized mouse model underscores the synergy of MYC and BCL2 in ‘double-hit’ lymphomas in human patients. Additionally, our findings highlight the utility of humanized mouse models in interrogating therapeutic approaches, particularly human-specific monoclonal antibodies.Kathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyNational Institutes of Health (U.S.) (Grant R01-CA128803)Virginia and Daniel K. Ludwig Graduate FellowshipNational Institute of General Medical Sciences (U.S.) (Medical Scientist Training Program Grant T32GM007753)MIT School of Science (Cancer Research Fellowship

    Cytotoxic T-cell precursor frequencies to HER-2 (369 – 377) in patients with HER-2/neu-positive epithelial tumours

    Get PDF
    HER-2/neu oncoprotein contains several major histocompatibility complex class I-restricted epitopes, which are recognised by cytotoxic T lymphocyte (CTL) on autologous tumours and therefore can be used in immune-based cancer therapies. Of these, the most extensively studied is HER-2(9(369)). In the present report, we used dendritic cells pulsed with HER-2(9(369)) to stimulate, in the presence of IL-7 and IL-12, the production of IFN-gamma by patients' CTL detected by the enzyme-linked immunosorbent spot-assay. Frequencies of peptide-specific precursors were estimated in HLA-A2, HLA-A3 and HLA-A26 patients with HER-2/neu-positive (+) breast, ovarian, lung, colorectal and prostate cancers and healthy individuals. We found increased percentages of such precursors in HLA-A2 (25%) and HLA-A26 (30%) patients, which were significantly higher (60%) in HLA-A3 patients. Our results demonstrate for the first time that pre-existing immunity to HER-2(9(369)) occurs in patients with colorectal, lung and prostate cancer. They also suggest that HER-2(9(369)) can be recognised by CTL, besides HLA-A2, also in the context of HLA-A3 and HLA-A26, thus increasing the applicability of HER-2(9(369))-based vaccinations in a considerably broader patients' population.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Human CD34+ CD133+ Hematopoietic Stem Cells Cultured with Growth Factors Including Angptl5 Efficiently Engraft Adult NOD-SCID Il2rγ−/− (NSG) Mice

    Get PDF
    Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34+ CD133+ cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg−/− (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34+ CD133+ fraction of expanded cells and that CD34+ CD133+ cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.Singapore-MIT Alliance for Research and Technology ( Infectious Diseases research grant

    Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells

    Get PDF
    NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy

    Halogenated Organic Molecules of Rhodomelaceae Origin: Chemistry and Biology

    Full text link

    An application of different bioindicators for assessing water quality: A case study in the rivers Alfeios and Pineios (Peloponnisos, Greece)

    No full text
    A number of bioindicators and biotic indices and scores based on benthic macroinvertebrates, diatoms, fishes, aquatic and riparian vegetation in relation to physicochemical parameters have been applied in assessing the water quality of the rivers Alfeios and Pineios (Peloponnisos, Greece). According to the findings, the water quality in both rivers varied from very poor to very good. Among the bioindicators used, the benthic macroinvertebrates seem to be the most reliable. The BBI and IBE were the most applicable indexes while the applicability of the IBMWP and IASPT in the Greek region can be enforced with the inclusion of the Diptreran family Rhagionidae and the Coleopteran family Elminthidae. © 2003 Published by Elsevier Science Ltd
    • 

    corecore