13,425 research outputs found

    The effect of curing temperature and time on the acoustic and optical properties of PVCP

    Get PDF
    Polyvinyl chloride plastisol (PVCP) has been increasingly used as a phantom material for photoacoustic and ultrasound imaging. As one of the most useful polymeric materials for industrial applications, its mechanical properties and behaviour are well-known. Although the acoustic and optical properties of several formulations have previously been investigated, it is still unknown how these are affected by varying the fabrication method. Here, an improved and straightforward fabrication method is presented and the effect of curing temperature and curing time on PVCP acoustic and optical properties, as well as their stability over time, is investigated. Speed of sound and attenuation were determined over a frequency range from 2 to 15 MHz, while the optical attenuation spectra of samples was measured over a wavelength range from 500 to 2200 nm. Results indicate that the optimum properties are achieved at curing temperatures between 160 °C and 180 °C, while the required curing time decreases with increasing temperature. The properties of the fabricated phantoms were highly repeatable, meaning the phantoms are not sensitive to the manufacturing conditions provided the curing temperature and time are within the range of complete gelation-fusion (samples are optically clear) and below the limit of thermal degradation (indicated by the yellowish appearance of the sample). The samples’ long term stability was assessed over 16 weeks and no significant change was observed in the measured acoustic and optical properties

    Measurement of the temperature-dependent output of lead zirconate titanate transducers

    Get PDF
    The effect of temperature and electrical drive conditions on the output of lead zirconate titanate (PZT) transducers is of particular interest in ultrasound metrology and medical ultrasound applications. In this work, the temperature-dependent output of two single-element PZT transducers was measured between 22 °C and 46 °C. Two independent measurement methods were used, namely radiation force balance measurements and laser vibrometry. When driven at constant voltage using a 50 matched signal generator and amplifier using continuous wave (CW) or quasi-CW excitation, the output of the two transducers increased on average by 0.6% per degree, largely due to an increase in transducer efficiency with temperature. The two measurement methods showed close agreement. Similar trends were observed when using single cycle excitation with the same signal chain. However, when driven using a pulser (which is not electrically matched), the two transducers exhibited different behaviour depending on their electrical impedance. Accounting for the temperature-dependent output of PZT transducers could have implications for many areas of ultrasound metrology, for example, in therapeutic ultrasound where a coupling fluid at an increased or decreased temperature is often used

    The dynamics of measles in sub-Saharan Africa.

    Get PDF
    Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur

    Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem

    Full text link
    We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB) equations, i.e. scalar conservation laws with diffusive-dispersive regularization. We review the existence of traveling wave solutions for these two classes of evolution equations. For classical equations the traveling wave problem (TWP) for a local KdVB equation can be identified with the TWP for a reaction-diffusion equation. In this article we study this relationship for these two classes of evolution equations with nonlocal diffusion/dispersion. This connection is especially useful, if the TW equation is not studied directly, but the existence of a TWS is proven using one of the evolution equations instead. Finally, we present three models from fluid dynamics and discuss the TWP via its link to associated reaction-diffusion equations

    CAR-Net: Clairvoyant Attentive Recurrent Network

    Full text link
    We present an interpretable framework for path prediction that leverages dependencies between agents' behaviors and their spatial navigation environment. We exploit two sources of information: the past motion trajectory of the agent of interest and a wide top-view image of the navigation scene. We propose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to look in a large image of the scene when solving the path prediction task. Our method can attend to any area, or combination of areas, within the raw image (e.g., road intersections) when predicting the trajectory of the agent. This allows us to visualize fine-grained semantic elements of navigation scenes that influence the prediction of trajectories. To study the impact of space on agents' trajectories, we build a new dataset made of top-view images of hundreds of scenes (Formula One racing tracks) where agents' behaviors are heavily influenced by known areas in the images (e.g., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net's ability to generalize to unseen scenes.Comment: The 2nd and 3rd authors contributed equall

    DEMYSTIFYING SHIP OPERATIONAL AVAILABILITY – AN ALTERNATIVE APPROACH FOR THE MAINTENANCE OF NAVAL VESSELS

    Get PDF
    Asset availability improvement has been the focus of many studies by various industries for a few decades now, and the defence industry is no exception. To date, there exists no simple and inexpensive high availability solution for the complex naval ships consisting of many interdependent systems and subsystems working in parallel. Any given approach must strike a balance between true needs and economics, an ever-increasing decision-making burden to stakeholders. Nevertheless, there are many ways to approach the problem. In the past, availability has been viewed as complex mathematical calculations and estimates involving defective equipment. The applied approach has not been fully understood nor appealing to most practitioners as well as the majority of stakeholders who continuously complain about the gap between theory and practice. This paper aims to demystify the complex naval ship availability issue, simplified for easy understanding of operators, maintainers and logisticians as well as other stakeholders involved in the maintenance of naval vessels. The stepby-step approach begins with the identification of severe factors involving both human and machinery affecting downtime of naval vessels culminating into the generation of an availability-oriented model, summarized to a simple four-step approach to availability improvement. Practitioners are now able to appreciate their individual contribution towards improving ship availability

    Cation distribution in manganese cobaltite spinels Co3−xMnxO4 (0 ≤ x ≤ 1) determined by thermal analysis

    Get PDF
    Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3−x Mn x O4 spinels, with 0 ≤ x ≤ 1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x ≤ 1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700–750 °C) in a Spark Plasma Sintering apparatus

    Structural identification of oxidized acyl-phosphatidylcholines that induce platelet activation

    Get PDF
    Oxidation of low-density lipoprotein (LDL) generates proinflammatory and prothrombotic mediators that may play a crucial role in cardiovascular and inflammatory diseases. In order to study platelet-activating components of oxidized LDL 1-stearoyl-2-arachidonoyl-sn-glycero-3- phosphocholine, a representative of the major phospholipid species in LDL, the 1-acyl-phosphatidylcholines (PC), was oxidized by CuCl2 and H2O2. After separation by high-performance liquid chromatography, three compounds were detected which induced platelet shape change at low micromolar concentrations. Platelet activation by these compounds was distinct from the pathways stimulated by platelet-activating factor, lysophosphatidic acid, lyso-PC and thromboxane A(2), as evidenced by the use of specific receptor antagonists. Further analyses of the oxidized phospholipids by electrospray ionization mass spectrometry structurally identified them as 1-stearoyl-2-azelaoyl-sn-glycero-3-phosphocholine (m/z 694; SAzPC), 1-stearoyl-2-glutaroyl-snglycero-3- phosphocholine (m/z 638; SGPC), and 1-stearoyl-2-( 5-oxovaleroyl)-sn-glycero-3-phosphocholine (m/z 622; SOVPC). These observations demonstrate that novel 1-acyl-PC which had previously been found to stimulate interaction of monocytes with endothelial cells also induce platelet activation, a central step in acute thrombogenic and atherogenic processes. Copyright (C) 2005 S. Karger AG, Basel

    Horizontal spreading of planetary debris accreted by white dwarfs

    Get PDF
    White dwarfs with metal-polluted atmospheres have been studied widely in the context of the accretion of rocky debris from evolved planetary systems. One open question is the geometry of accretion and how material arrives and mixes in the white dwarf surface layers. Using the three-dimensional (3D) radiation hydrodynamics code CO5BOLD, we present the first transport coefficients in degenerate star atmospheres that describe the advection–diffusion of a passive scalar across the surface plane. We couple newly derived horizontal diffusion coefficients with previously published vertical diffusion coefficients to provide theoretical constraints on surface spreading of metals in white dwarfs. Our grid of 3D simulations probes the vast majority of the parameter space of convective white dwarfs, with pure-hydrogen atmospheres in the effective temperature range of 6000–18 000 K and pure-helium atmospheres in the range of 12 000–34 000 K. Our results suggest that warm hydrogen-rich atmospheres (DA; ≳13000 K) and helium-rich atmospheres (DB and DBA; ≳30000 K) are unable to efficiently spread the accreted metals across their surface, regardless of the time dependence of accretion. This result may be at odds with the current non-detection of surface abundance variations in white dwarfs with debris discs. For cooler hydrogen- and helium-rich atmospheres, we predict a largely homogeneous distribution of metals across the surface within a vertical diffusion time-scale. This is typically less than 0.1 per cent of disc lifetime estimates, a quantity that is revisited in this paper using the overshoot results. These results have relevance for studies of the bulk composition of evolved planetary systems and models of accretion disc physics

    Inside-Out Evacuation of Transitional Protoplanetary Disks by the Magneto-Rotational Instability

    Full text link
    How do T Tauri disks accrete? The magneto-rotational instability (MRI) supplies one means, but protoplanetary disk gas is typically too poorly ionized to be magnetically active. Here we show that the MRI can, in fact, explain observed accretion rates for the sub-class of T Tauri disks known as transitional systems. Transitional disks are swept clean of dust inside rim radii of ~10 AU. Stellar coronal X-rays ionize material in the disk rim, activating the MRI there. Gas flows from the rim to the star, at a rate limited by the depth to which X-rays ionize the rim wall. The wider the rim, the larger the surface area that the rim wall exposes to X-rays, and the greater the accretion rate. Interior to the rim, the MRI continues to transport gas; the MRI is sustained even at the disk midplane by super-keV X-rays that Compton scatter down from the disk surface. Accretion is therefore steady inside the rim. Blown out by radiation pressure, dust largely fails to accrete with gas. Contrary to what is usually assumed, ambipolar diffusion, not Ohmic dissipation, limits how much gas is MRI-active. We infer values for the transport parameter alpha on the order of 0.01 for GM Aur, TW Hyd, and DM Tau. Because the MRI can only afflict a finite radial column of gas at the rim, disk properties inside the rim are insensitive to those outside. Thus our picture provides one robust setting for planet-disk interaction: a protoplanet interior to the rim will interact with gas whose density, temperature, and transport properties are definite and decoupled from uncertain initial conditions. Our study also supplies half the answer to how disks dissipate: the inner disk drains from the inside out by the MRI, while the outer disk photoevaporates by stellar ultraviolet radiation.Comment: Accepted to Nature Physics June 7, 2007. The manuscript for publication is embargoed per Nature policy. This arxiv.org version contains more technical details and discussion, and is distributed with permission from the editors. 10 pages, 4 figure
    corecore