1,435 research outputs found

    Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles

    Full text link
    © 2018 Elsevier B.V. Hybrid electric vehicles (HEVs) are perceived to be more energy efficient and less polluting than conventional internal combustion engine (ICE) vehicles. However, increasing evidence has shown that real-driving emissions (RDE) could be much higher than laboratory type approval limits and the advantages of HEVs over their conventional ICE counterparts under real-driving conditions have not been studied extensively. Therefore, this study was conducted to evaluate the real-driving fuel consumption and pollutant emissions performance of HEVs against their conventional ICE counterparts. Two pairs of hybrid and conventional gasoline vehicles of the same model were tested simultaneously in a novel convoy mode using two portable emission measurement systems (PEMSs), thus eliminating the effect of vehicle configurations, driving behaviour, road conditions and ambient environment on the performance comparison. The results showed that although real-driving fuel consumption for both hybrid and conventional vehicles were 44%–100% and 30%–82% higher than their laboratory results respectively, HEVs saved 23%–49% fuel relative to their conventional ICE counterparts. Pollutant emissions of all the tested vehicles were lower than the regulation limits. However, HEVs showed no reduction in HC emissions and consistently higher CO emissions compared to the conventional ICE vehicles. This could be caused by the frequent stops and restarts of the HEV engines, as well as the lowered exhaust gas temperature and reduced effectiveness of the oxidation catalyst. The findings therefore show that while achieving the fuel reduction target, hybridisation did not bring the expected benefits to urban air quality

    Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters

    Full text link
    © 2019 Elsevier Ltd Diesel vehicles are a major source of air pollutants in cities and have caused significant health risks to the public globally. This study used both on-road remote sensing and transient chassis dynamometer to characterise emissions of diesel light goods vehicles. A large sample size of 183 diesel vans were tested on a transient chassis dynamometer to evaluate the emission levels of in-service diesel vehicles and to determine a set of remote sensing cutpoints for diesel high-emitters. The results showed that 79% and 19% of the Euro 4 and Euro 5 diesel vehicles failed the transient cycle test, respectively. Most of the high-emitters failed the NO limits, while no vehicle failed the HC limits and only a few vehicles failed the CO limits. Vehicles that failed NO limits occurred in both old and new vehicles. NO/CO2 ratios of 57.30 and 22.85 ppm/% were chosen as the remote sensing cutpoints for Euro 4 and Euro 5 high-emitters, respectively. The cutpoints could capture a Euro 4 and Euro 5 high-emitter at a probability of 27% and 57% with one snapshot remote sensing measurement, while only producing 1% of false high-emitter detections. The probability of high-emitting events was generally evenly distributed over the test cycle, indicating that no particular driving condition produced a higher probability of high-emitting events. Analysis on the effect of cutpoints on real-driving diesel fleet was carried out using a three-year remote sensing program. Results showed that 36% of Euro 4 and 47% of Euro 5 remote sensing measurements would be detected as high-emitting using the proposed cutpoints. In-service diesel vehicles emit low CO and HC but high NO

    Reference-Point Indentation Correlates with Bone Toughness Assessed Using Whole-Bone Traditional Mechanical Testing

    Get PDF
    Traditional bone mechanical testing techniques require excised bone and destructive sample preparation. Recently, a cyclic-microindentation technique, reference-point indentation (RPI), was described that allows bone to be tested in a clinical setting, permitting the analysis of changes to bone material properties over time. Because this is a new technique, it has not been clear how the measurements generated by RPI are related to the material properties of bone measured by standard techniques. In this paper, we describe our experience with the RPI technique, and correlate the results obtained by RPI with those of traditional mechanical testing, namely 3-point bending and axial compression. Using different animal models, we report that apparent bone material toughness obtained from 3-point bending and axial compression is inversely correlated with the indentation distance increase (IDI) obtained from RPI with r2 values ranging from 0.50 to 0.57. We also show that conditions or treatments previously shown to cause differences in toughness, including diabetes and bisphosphonate treatment, had significantly different IDI values compared to controls. Collectively these results provide a starting point for understanding how RPI relates to traditional mechanical testing results

    The impact of LASPO on routes to justice

    Get PDF
    This research underlines the emotional, social, financial and mental health impacts for individuals who have attempted to resolve their legal problems without legal aid, following the implementation of the Legal Aid, Sentencing and Punishment of Offenders Act (LASPO) in 2013. LASPO introduced funding cuts to legal aid and narrowed the scope and financial eligibility criteria, with the result that fewer people could access legal advice and representation for problems in areas such as family, employment and welfare benefits law. We interviewed over 100 people in the Liverpool City Region, with problems in at least one of these areas of law, to understand how LASPO had affected their options for resolving those issues. We also interviewed a number of advice providers and legal aid practitioners, and analysed national data from Citizens Advice. Many participants reported significant financial deprivation as a result of trying but not being able to resolve their legal issues. Some were unable to afford food, adequate housing or other essentials. A lack of preventive legal help led to delays in resolution, which often made problems worse. There was also evidence that costs were passed to other parts of the public sector, including an increased reliance on welfare benefits as a result of unresolved employment issues. Family law • The high cost of legal fees is a key barrier to justice. Some participants who paid for legal advice or representation reported going into debt as a result. • People’s inability to pay for expert or specialist evidence without legal aid may have led to courts making decisions on the basis of insufficient information. • Cuts to legal aid have had a negative impact on children’s lives, especially in relation to child contact cases. Employment law • The main barriers to justice are the high cost of legal representation, the difficulty of navigating the tribunal process without support and a low level of knowledge about employment rights. • Many participants reported that the costs of bringing their claims to tribunal were disproportionate to the value of the claims. This deterred them from bringing claims and made it harder to find a solicitor willing to take their case. • Participants had fewer options for accessing third-sector specialist advice and representation. Those participants who went to tribunal had to represent themselves as a result, and in general they lacked the skills or experience to do this competently. Welfare benefits law • LASPO has significantly reduced the capacity of voluntary sector organisations to provide welfare law advice. There is almost no specialist advice left to provide support to appeal benefits decisions. • The removal of welfare benefits law from the scope of legal aid has exacerbated the impact of recent welfare reforms, which is likely to have affected disabled people disproportionately. Most participants tried multiple routes to resolve a single issue: attempting to resolve problems on their own, trying to access free advice and taking steps to get paid advice or representation before courts or tribunals. But without legal aid, almost all the participants struggled to solve their problems

    Tackling nitric oxide emissions from dominant diesel vehicle models using on-road remote sensing technology

    Full text link
    © 2018 Elsevier Ltd Remote sensing provides a rapid detection of vehicle emissions under real driving condition. Remote sensing studies showed that diesel nitrogen oxides emissions changed little or were even increasing in recent years despite the tightened emission standards. To more accurately and fairly evaluate the emission trends, it is hypothesized that analysis should be detailed for individual vehicle models as each model adopted different emissions control technologies and retrofitted the engine/vehicle at different time. Therefore, this study was aimed to investigate the recent nitric oxide (NO) emission trends of the dominant diesel vehicle models using a large remote sensing dataset collected in Hong Kong. The results showed that the diesel vehicle fleet was dominated by only seven models, accounting for 78% of the total remote sensing records. Although each model had different emission levels and trends, generally all the dominant models showed a steady decrease or stable level in the fuel based NO emission factors (g/kg fuel) over the period studied except for BaM1 and BdM2. A significant increase was observed for the BaM1 2.49 L and early 2.98 L models during 2005–2011, which we attribute to the change in the diesel fuel injection technology. However, the overall mean NO emission factor of all the vehicles was stable during 1991–2006 and then decreased steadily during 2006–2016, in which the emission trends of individual models were averaged out and thus masked. Nevertheless, the latest small, medium and heavy diesel vehicles achieved similar NO emission factors due to the converging of operation windows of the engine and emission control devices. The findings suggested that the increasingly stringent European emission standards were not very effective in reducing the NO emissions of some diesel vehicle models in the real world. The European emission regulations were not very effective in reducing the NO emissions from some diesel vehicle models in the real world

    Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions

    Get PDF
    Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationshipre-intervention RPI measurebetween RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI's IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance

    Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck

    Full text link
    © 2019 Elsevier Ltd Although new vehicles are designed to comply with specific emission regulations, their in-service performance would not necessarily achieve them due to wear-and-tear and improper maintenance, as well as tampering or failure of engine control and exhaust after-treatment systems. In addition, there is a lack of knowledge on how significantly these potential malfunctions affect vehicle performance. This study was therefore conducted to simulate the effect of various engine malfunctions on the fuel consumption and gaseous emissions of a 16-tonne Euro VI diesel truck using transient chassis dynamometer testing. The simulated malfunctions included those that would commonly occur in the intake, fuel injection, exhaust after-treatment and other systems. The results showed that all malfunctions increased fuel consumption except for the malfunction of EGR fully closed which reduced fuel consumption by 31%. The biggest increases in fuel consumption were caused by malfunctions in the intake system (16%–43%), followed by the exhaust after-treatment (6%–30%), fuel injection (4%–24%) and other systems (6%–11%). Regarding pollutant emissions, the effect of engine malfunctions on HC and CO emissions was insignificant, which remained unchanged or even reduced for most cases. An exception was EGR fully open which increased HC and CO emissions by 343% and 1124%, respectively. Contrary to HC and CO emissions, NO emissions were significantly increased by malfunctions. The largest increases in NO emissions were caused by malfunctions in the after-treatment system, ranging from 38% (SCR) to 1606% (DPF pressure sensor). Malfunctions in the fuel injection system (24%–1259%) and intercooler (438%–604%) could also increase NO emissions markedly. This study demonstrated clearly the importance of having properly functioning engine control and exhaust after-treatment systems to achieve the required performance of fuel consumption and pollutant emissions
    • …
    corecore