17 research outputs found
Detection of ice core particles via deep neural networks
Insoluble particles in ice cores record signatures of past climate parameters like vegetation, volcanic activity or aridity. Their analytical detection depends on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge and often restrict sampling strategies. To help overcome these limitations, we present a framework based on Flow Imaging Microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify 7 commonly found classes: mineral dust, felsic and basaltic volcanic ash (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber) and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system’s potentials and limitations with respect to the detection of mineral dust, pollen grains and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non destructive, fully reproducible and does not require any sample preparation step. The presented framework can bolster research in the field, by cutting down processing time, supporting human-operated microscopy and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented
Differences in blood pressure before and after administration of local anesthetic among obese adult female patients
The effectiveness of the use of plastic wrapping on dental unit work desks on the number of bacterial colonies in Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of North Sumatra (USU)
A Pilot Study to Evaluate Appropriateness of Empirical Antibiotic Use in Intensive Care Unit of King Saud Medical City, Riyadh, Saudi Arabia
Assessment of the Tidal Current Energy Resources and the Hydrodynamic Impacts of Energy Extraction at the PuHu Channel in Zhoushan Archipelago, China
Applications of Evolutionary Computation
The application of genetic and evolutionary computation to problems in medicine has increased rapidly over the past five years, but there are specific issues and challenges that distinguish it from other real-world applications. Obtaining reliable and coherent patient data, establishing the clinical need and demonstrating value in the results obtained are all aspects that require careful and detailed consideration. This tutorial is based on research which uses genetic programming (a representation of Cartesian Genetic Programming) in the diagnosis and monitoring of Parkinson's disease, Alzheimer's disease and other neurodegenerative conditions, as well as in the early detection of breast cancer through automated assessment of mammograms. The work is supported by multiple clinical studies in progress in the UK (Leeds General Infirmary), USA (UCSF), UAE (Dubai Rashid Hospital), Australia (Monash Medical Center) and Singapore (National Neuroscience Institute). The technology is protected through three patent applications and a University spin-out company marketing four medical devices. The tutorial considers the following topics: Introduction to medical applications of genetic and evolutionary computation and how these differ from other real-world applications Overview of past work in the from a medical and evolutionary computation point of view Three case examples of medical applications: i. diagnosis and monitoring of Parkinson's disease ii. detection of beast cancer from mammograms iii. cancer screening using Raman spectroscopy Practical advice on how to get started working on medical applications, including existing medical databases and conducting new medical studies, commercialization and protecting intellectual property. Summary, further reading and link
