2,162 research outputs found
Doppler Amplification of Motion of a Trapped Three-Level Ion
The system of a trapped ion translationally excited by a blue-detuned
near-resonant laser, sometimes described as an instance of a phonon laser, has
recently received attention as interesting in its own right and for its
application to non-destructive readout of internal states of non-fluorescing
ions. Previous theoretical work has been limited to cases of two-level ions.
Here, we perform simulations to study the dynamics of a phonon laser involving
the -type ^{138}\mbox{Ba}^{+} ion, in which coherent population
trapping effects lead to different behavior than in the previously studied
cases. We also explore optimization of the laser parameters to maximize
amplification gain and signal-to-noise ratio for internal state readout
Resonant Few-Photon Excitation of a Single-Ion Oscillator
We study the motion of an undamped single-ion harmonic oscillator, resonantly
driven with a pulsed radiation pressure force. We demonstrate that a barium
ion, initially cooled to the Doppler limit, quickly phase locks to the drive
and builds up coherent oscillations above the thermal distribution after
scattering of order one hundred photons. In our experiment, this seeded motion
is subsequently amplified and then analyzed by Doppler velocimetry. Since the
coherent oscillation is conditional upon the internal quantum state of the ion,
this motional excitation technique could be useful in atomic or molecular
single-ion spectroscopy experiments, providing a simple protocol for state
readout of non-fluorescing ions with partially closed-cycle transitions
Single-Particle Self-Excited Oscillator
Electronic feedback is used to self-excite the axial oscillation of a single electron in a Penning trap. Large, stable, easily detected oscillations arise even in an anharmonic potential. Amplitudes are controlled by adjusting the feedback gain, and frequencies can be made nearly independent of amplitude fluctuations. Quantum jump spectroscopy of a perpendicular cyclotron motion reveals the absolute temperature and amplitude of the self-excited oscillation. The possibility to quickly measure parts per billion frequency shifts could open the way to improved measurements of e-, e+, p, and [overline p] magnetic moments
Preliminary study of minimum performance approaches to automated Mars sample return missions Final report, 19 Oct. - 20 Nov. 1970
Alternative mission/system approaches to automated Mars surface sample return based on utilization of Titan 3 or Saturn Intermediate-20 launch vehicle
Determinants of anemia and hemoglobin concentration in haitian school-aged children
Anemia diminishes oxygen transport in the body, resulting in potentially irreversible growth and developmental consequences for children. Limited evidence for determinants of anemia exists for school-aged children. We conducted a cluster randomized controlled trial in Haiti from 2012 to 2013 to test the efficacy of a fortified school snack. Children (N = 1,047) aged 3–13 years were followed longitudinally at three time points for hemoglobin (Hb) concentrations, anthropometry, and bioelectrical impedance measures. Dietary intakes, infectious disease morbidities, and socioeconomic and demographic factors were collected at baseline and endline. Longitudinal regression modeling with generalized least squares and logit models with random effects identified anemia risk factors beyond the intervention effect. At baseline, 70.6% of children were anemic and 2.6% were severely anemic. Stunting increased the odds of developing anemia (adjusted odds ratio [OR]: 1.48, 95% confidence interval [CI]: 1.05–2.08) and severe anemia (adjusted OR: 2.47, 95% CI: 1.30–4.71). Parent-reported vitamin A supplementation and deworming were positively associated with Hb concentrations, whereas fever and poultry ownership showed a negative relationship with Hb concentration and increased odds of severe anemia, respectively. Further research should explore the full spectrum of anemia etiologies in school children, including genetic causes
Controllability and universal three-qubit quantum computation with trapped electron states
We show how to control and perform universal three-qubit quantum computation
with trapped electron quantum states. The three qubits are the electron spin,
and the first two quantum states of the cyclotron and axial harmonic
oscillators. We explicitly show how the universal gates can be performed. As an
example of a non-trivial quantum algorithm, we outline the implementation of
the Deutsch-Jozsa algorithm in this system.Comment: 4 pages, 1 figure. Typos corrected. The original publication is
available at http://www.springerlink.co
- …
