31 research outputs found

    Thermodynamics of Solar Cells

    No full text

    Optimal Sunlight Harvesting in Photovoltaics and Photosynthesis

    No full text
    Materials employed to harvest sunlight are commonly recognized to be at a premium when their optical absorption peaks in the visible, extends to the infrared, is panchromatic, and is matched to the solar spectrum. By contrast, natural photosynthetic absorbers such as chlorophylls and carotenoids display absorption spectra with narrow peaks for yet-unknown evolutionary reasons. Beyond such general observations, a rigorous treatment of sunlight harvesting optimization is still lacking. In this work, we provide a quantitative analysis of optimal solar energy harvesting in materials. We derive optimal absorption spectra as a function of absorber thickness, elucidate the concept of solar-matched absorption and its applicability limits, and define a procedure to rank photovoltaic materials for sunlight harvesting. In addition, we suggest a possible explanation for why absorption in plant photosynthetic pigments occurs in narrow energy windows

    Hierarchically structured titania films prepared by polymer/colloidal templating

    No full text
    Hierarchically structured titania films for application in hybrid solar cells are prepared by combining microsphere templating and sol−gel chemistry with an amphiphilic diblock copolymer as a structure-directing agent. The films have a functional structure on three size scales: (1) on the micrometer scale a holelike structure for reduction of light reflection, (2) on an intermediate scale macropores for surface roughening and improved infiltration of a hole transport material, and (3) on a nanometer scale a mesoporous structure for charge generation. Poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide) (PDMS-b-MA(PEO)) is used as a structure-directing agent for the preparation of the mesopore structure, and poly(methyl methacrylate) (PMMA) microspheres act as a template for the micrometer-scale structure. The structure on all levels is modified by the method of polymer extraction as well as by the addition of PMMA particles to the sol−gel solution. Calcination results in structures with increased size and a higher degree of order than extraction with acetic acid. With addition of PMMA a microstructure is created and the size of the mesopores is reduced. Already moderate microstructuring results in a strong decrease in film reflectivity; a minimum reflectivity value of less than 0.1 is obtained by acetic acid treatment and subsequent calcinatio
    corecore