11 research outputs found

    Effects of different leukocyte subpopulations and flow conditions on leukocyte accumulation during reperfusion

    Get PDF
    Background/Aims: The study examined the interdependent effects of shear stress and different leukocyte subpopulations on endothelial cell activation and cell interactions during low flow and reperfusion. Methods: Human umbilical venous endothelial cells were perfused with either neutrophils or monocytes at different shear stress (2-0.25 dyn/cm 2) and adhesion was quantified by microscopy. Effects of adherent neutrophils and monocytes on endothelial cell adhesion molecule expression were analyzed by flow cytometry after 4-hour static coincubation. After coincubation, the cocultures were reperfused with labeled neutrophils at 2 dyn/cm 2 and their adhesion was quantified selectively. For the control, endothelium monocultures with and without lipopolysaccharide activation were used. Results: At 2 dyn/cm 2, adhesion did not exceed baseline levels on nonactivated endothelium. Decreasing shear stress to 0.25 dyn/cm 2 largely increased the adhesion of both leukocyte subpopulations, similar to the effect of lipopolysaccharide at 2 dyn/cm 2. However, only adherent monocytes increased adhesion molecule expression, whereas neutrophils had no effect. As a functional consequence, adherent monocytes largely increased neutrophil adhesion during reperfusion, whereas adherent neutrophils did not. Conclusion: Compromised shear stress is an autonomous trigger of leukocyte adhesion even in the absence of additional activators. Exceeding this immediate effect, adherent monocytes induce further endothelial activation and enhance further neutrophil adhesion during reperfusion. Copyrigh

    Perioperative fluid and volume management: physiological basis, tools and strategies

    Get PDF
    Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management
    corecore