2,427 research outputs found
Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier
In order to describe heavy-ion fusion reactions around the Coulomb barrier
with an actinide target nucleus, we propose a model which combines the
coupled-channels approach and a fluctuation-dissipation model for dynamical
calculations. This model takes into account couplings to the collective states
of the interacting nuclei in the penetration of the Coulomb barrier and the
subsequent dynamical evolution of a nuclear shape from the contact
configuration. In the fluctuation-dissipation model with a Langevin equation,
the effect of nuclear orientation at the initial impact on the prolately
deformed target nucleus is considered. Fusion-fission, quasi-fission and deep
quasi-fission are separated as different Langevin trajectories on the potential
energy surface. Using this model, we analyze the experimental data for the mass
distribution of fission fragments (MDFF) in the reactions of
S+U and Si+U at several incident energies
around the Coulomb barrier. We find that the time scale in the quasi-fission as
well as the deformation of fission fragments at the scission point are
different between the Si+U and S+U systems,
causing different mass asymmetries of the quasi-fission.Comment: 11 figure
Generic model for magnetic explosions applied to solar flares
An accepted model for magnetospheric substorms is proposed as the basis for a
generic model for magnetic explosions, and is applied to solar flares. The
model involves widely separated energy-release and particle-acceleration
regions, with energy transported Alfv\'enically between them. On a global
scale, these regions are coupled by a large-scale current that is set up during
the explosion by redirection of pre-existing current associated with the stored
magnetic energy. The explosion-related current is driven by an electromotive
force (EMF) due to the changing magnetic flux enclosed by this current. The
current path and the EMF are identified for an idealized quadrupolar model for
a flare
Thermally Assisted Penetration and Exclusion of Single Vortex in Mesoscopic Superconductors
A single vortex overcoming the surface barrier in a mesoscopic superconductor
with lateral dimensions of several coherence lengths and thickness of several
nanometers provides an ideal platform to study thermal activation of a single
vortex. In the presence of thermal fluctuations, there is non-zero probability
for vortex penetration into or exclusion from the superconductor even when the
surface barrier does not vanish. We consider the thermal activation of a single
vortex in a mesoscopic superconducting disk of circular shape. To obtain
statistics for the penetration and exclusion magnetic fields, slow and periodic
magnetic fields are applied to the superconductor. We calculate the
distribution of the penetration and exclusion fields from the thermal
activation rate. This distribution can also be measured experimentally, which
allows for a quantitative comparison.Comment: 7 pages, 4 figure
A dynamical model of surrogate reactions
A new dynamical model is developed to describe the whole process of surrogate
reactions; transfer of several nucleons at an initial stage, thermal
equilibration of residues leading to washing out of shell effects and decay of
populated compound nuclei are treated in a unified framework. Multi-dimensional
Langevin equations are employed to describe time-evolution of collective
coordinates with a time-dependent potential energy surface corresponding to
different stages of surrogate reactions. The new model is capable of
calculating spin distributions of the compound nuclei, one of the most
important quantity in the surrogate technique. Furthermore, various observables
of surrogate reactions can be calculated, e.g., energy and angular distribution
of ejectile, and mass distributions of fission fragments. These features are
important to assess validity of the proposed model itself, to understand
mechanisms of the surrogate reactions and to determine unknown parameters of
the model. It is found that spin distributions of compound nuclei produced in
O+U O+U and O+U
O+U reactions are equivalent and much less than
10, therefore satisfy conditions proposed by Chiba and Iwamoto (PRC 81,
044604(2010)) if they are used as a pair in the surrogate ratio method.Comment: 17 pages, 5 figure
Giant vortices, vortex rings and reentrant behavior in type-1.5 superconductors
We predict that in a bulk type-1.5 superconductor the competing magnetic
responses of the two components of the order parameter can result in a vortex
interaction that generates group-stabilized giant vortices and unusual vortex
rings in the absence of any extrinsic pinning or confinement mechanism. We also
find within the Ginzburg-Landau theory a rich phase diagram with successions of
behaviors like type-1 -> type-1.5 -> type-2 -> type-1.5 as temperature
decreases.Comment: 5 pages, 4 figure
Vitrification of a monatomic 2D simple liquid
A monatomic simple liquid in two dimensions, where atoms interact
isotropically through the Lennard-Jones-Gauss potential [M. Engel and H.-R.
Trebin, Phys. Rev. Lett. 98, 225505 (2007)], is vitrified by the use of a rapid
cooling technique in a molecular dynamics simulation. Transformation to a
crystalline state is investigated at various temperatures and the
time-temperature-transformation (TTT) curve is determined. It is found that the
transformation time to a crystalline state is the shortest at a temerature 14%
below the melting temperature Tm and that at temperatures below Tv = 0.6 Tm the
transformation time is much longer than the available CPU time. This indicates
that a long-lived glassy state is realized for T < Tv.Comment: 5pages,5figures,accepted for publication in CEJ
Baryonic Bound State of Vortices in Multicomponent Superconductors
We construct a bound state of three 1/3-quantized Josephson coupled vortices
in three-component superconductors with intrinsic Josephson couplings, which
may be relevant with regard to iron-based superconductors. We find a Y-shaped
junction of three domain walls connecting the three vortices, resembling the
baryonic bound state of three quarks in QCD. The appearance of the Y-junction
(but not a Delta-junction) implies that in both cases of superconductors and
QCD, the bound state is described by a genuine three-body interaction (but not
by the sum of two-body interactions). We also discuss a
confinement/deconfinement phase transition.Comment: 11 pages, 3 figures, one section on confinement/deconfinement
transition added, published versio
Testing new physics with the electron g-2
We argue that the anomalous magnetic moment of the electron (a_e) can be used
to probe new physics. We show that the present bound on new-physics
contributions to a_e is 8*10^-13, but the sensitivity can be improved by about
an order of magnitude with new measurements of a_e and more refined
determinations of alpha in atomic-physics experiments. Tests on new-physics
effects in a_e can play a crucial role in the interpretation of the observed
discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large
class of models, new contributions to magnetic moments scale with the square of
lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e
of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in
which this scaling is violated and larger effects in a_e are expected. In such
models the value of a_e is correlated with specific predictions for processes
with violation of lepton number or lepton universality, and with the electric
dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde
The 95zr(n, gamma)96zr cross section from the surrogate ratio method and its effect on the s-process nucleosynthesis
The 95Zr(n,gamma)96Zr reaction cross section is crucial in the modelling of
s-process nucleosynthesis in asymptotic giant branch stars because it controls
the operation of the branching point at the unstable 95Zr and the subsequent
production of 96Zr. We have carried out the measurement of the 94Zr(18O,16O)
and 90Zr(18O,16O) reactions and obtained the gamma-decay probability ratio of
96Zr* and 92Zr* to determine the 95Zr(n,gamma)96Zr reaction cross sections with
the surrogate ratio method. Our deduced maxwellian-averaged cross section of
66+-16 mb at 30 keV is close to the value recommended by Bao et al. (2000), but
30% and more than a factor of two larger than the values proposed by Toukan &
Kappeler (1990) and Lugaro et al. (2014), respectively, and routinely used in
s-process models. We tested the new rate in stellar models with masses between
2 and 6 Msun and metallicities 0.014 and 0.03. The largest changes - up 80%
variations in 96Zr - are seen in models of mass 3-4 Msun, where the 22Ne
neutron source is mildly activated. The new rate can still provide a match to
data from meteoritic stardust silicon carbide grains, provided the maximum mass
of the parent stars is below 4 Msun, for a metallicity of 0.03.Comment: 10 pages, 6 figures, accepted for publication in Ap
Role of the target orientation angle and orbital angular momentum in the evaporation residue production
The influence of the orientation angles of the target nucleus symmetry axis
relative to the beam direction on the production of the evaporation residues is
investigated for the Ca+Sm reaction as a function of the beam
energy. At low energies (137 MeV), the yield of evaporation
residues is observed only for collisions with small orientation angles
().
At large energies (about 140--180 MeV) all the orientation
angles can contribute to the evaporation residue cross section
in the 10--100 mb range, and at 180 MeV
ranges around 0.1--10 mb because the fission barrier for a compound nucleus
decreases by increasing its excitation energy and angular momentum.Comment: 20 pages, 10 figures, submitted to JPS
- …
