8,878 research outputs found

    Hidden Extra U(1) at the Electroweak/TeV Scale

    Full text link
    We propose a simple extension of the Standard Model (SM) by adding an extra U(1) symmetry which is hidden from the SM sector. Such a hidden U(1) has not been considered before, and its existence at the TeV scale can be explored at the LHC. This hidden U(1) does not couple directly to the SM particles, and couples only to new SU(2)_L singlet exotic quarks and singlet Higgs bosons, and is broken at the TeV scale. The dominant signals at the high energy hadron colliders are multi lepton and multi b-jet final states with or without missing energy. We calculate the signal rates as well as the corresponding Standard Model background for these final states. A very distinctive signal is 6 high p_T b-jets in the final state with no missing energy. For a wide range of the exotic quarks masses the signals are observable above the background at the LHC.Comment: 19 pages, 5 figure

    AstroSat view of MAXI J1535-571: broadband spectro-temporal features

    Full text link
    We present the results of Target of Opportunity (ToO) observations made with AstroSat of the newly discovered black hole binary MAXI J1535-571. We detect prominent C-type Quasi-periodic Oscillations (QPOs) of frequencies varying from 1.85 Hz to 2.88 Hz, along with distinct harmonics in all the AstroSat observations. We note that while the fundamental QPO is seen in the 3 - 50 keV energy band, the harmonic is not significant above ~ 35 keV. The AstroSat observations were made in the hard intermediate state, as seen from state transitions observed by MAXI and Swift. We attempt spectral modelling of the broadband data (0.7-80 keV) provided by AstroSat using phenomenological and physical models. The spectral modelling using nthComp gives a photon index in the range between 2.18-2.37 and electron temperature ranging from 21 to 63 keV. The seed photon temperature is within 0.19 to 0.29 keV. The high flux in 0.3 - 80 keV band corresponds to a luminosity varying from 0.7 to 1.07 L_Edd assuming the source to be at a distance of 8 kpc and hosting a black hole with a mass of 6 M_{\odot}. The physical model based on the two-component accretion flow gives disc accretion rates as high as ~ 1 m˙Edd\dot{m}_{Edd} and halo rate ~ 0.2 m˙Edd\dot{m}_{Edd} respectively. The near Eddington accretion rate seems to be the main reason for the unprecedented high flux observed from this source. The two-component spectral fitting of AstroSat data also provides an estimate of a black hole mass between 5.14 to 7.83 M_{\odot}.Comment: 15 pages, 9 figures, MNRAS (Accepted on 2019 May 10

    Sparticle Spectroscopy and Phenomenology in a New Class of Gauge Mediated Supersymmetry Breaking Models

    Get PDF
    Recently, a proposal (by R.N.M. and S.N.) was made for a new class of gauge mediated supersymmetry breaking (GMSB) models where the standard model gauge group is embedded into the gauge group SU(2)L×U(1)I3R×U(1)BLSU(2)_L\times U(1)_{I_{3R}}\times U(1)_{B-L} (or SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R\times U(1)_{B-L}) at the supersymmetry breaking scale Λ\Lambda. Supersymmetry breaking is transmitted to the visible sector via the same fields that are responsible for gauge symmetry breaking rather than by vector-like quarks and leptons as in the conventional GMSB models. These models have a number of attractive properties such as exact R-parity conservation, non-vanishing neutrino masses and a solution to the SUSYCP (and strong CP) problem. In this paper, we present the detailed sparticle spectroscopy and phenomenological implications of the various models of this class that embody the general spirit of our previous work but use a larger variety of messenger fields. A distinct characteristic of this class of models is that unlike the conventional GMSB ones, the lightest neutralino is always the NLSP leading to photonic events in the colliders.Comment: 29 pages(Latex), 3 PS figures, a new table and a few comments have been added, a few typos have been corrected; version to appear in Phys. Rev.

    Melting of antikaon condensate in protoneutron stars

    Full text link
    We study the melting of a KK^- condensate in hot and neutrino-trapped protoneutron stars. In this connection, we adopt relativistic field theoretical models to describe the hadronic and condensed phases. It is observed that the critical temperature of antikaon condensation is enhanced as baryon density increases. For a fixed baryon density, the critical temperature of antikaon condensation in a protoneutron star is smaller than that of a neutron star. We also exhibit the phase diagram of a protoneutron star with a KK^- condensate.Comment: 17 pages including 7 figure

    Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments

    Get PDF
    © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.The binarization of consensus partition matrices (Bi-CoPaM) method has, among its unique features, the ability to perform ensemble clustering over the same set of genes from multiple microarray datasets by using various clustering methods in order to generate tunable tight clusters. Therefore, we have used the Bi-CoPaM method to the most synchronized 500 cell-cycle-regulated yeast genes from different microarray datasets to produce four tight, specific and exclusive clusters of co-expressed genes. We found 19 genes formed the tightest of the four clusters and this included the gene CMR1/YDL156W, which was an uncharacterized gene at the time of our investigations. Two very recent proteomic and biochemical studies have independently revealed many facets of CMR1 protein, although the precise functions of the protein remain to be elucidated. Our computational results complement these biological results and add more evidence to their recent findings of CMR1 as potentially participating in many of the DNA-metabolism processes such as replication, repair and transcription. Interestingly, our results demonstrate the close co-expressions of CMR1 and the replication protein A (RPA), the cohesion complex and the DNA polymerases α, δ and ɛ, as well as suggest functional relationships between CMR1 and the respective proteins. In addition, the analysis provides further substantial evidence that the expression of the CMR1 gene could be regulated by the MBF complex. In summary, the application of a novel analytic technique in large biological datasets has provided supporting evidence for a gene of previously unknown function, further hypotheses to test, and a more general demonstration of the value of sophisticated methods to explore new large datasets now so readily generated in biological experiments.National Institute for Health Researc

    Glycoform Modification of Secreted Recombinant Glycoproteins through Kifunensine Addition during Transient Vacuum Agroinfiltration.

    Get PDF
    Kifunensine, a potent and selective inhibitor of class I α-mannosidases, prevents α-mannosidases I from trimming mannose residues on glycoproteins, thus resulting in oligomannose-type glycans. We report for the first time that through one-time vacuum infiltration of kifunensine in plant tissue, N-linked glycosylation of a recombinant protein transiently produced in whole-plants shifted completely from complex-type to oligomannose-type. Fc-fused capillary morphogenesis protein 2 (CMG2-Fc) containing one N-glycosylation site on the Fc domain, produced in Nicotiana benthamiana whole plants, served as a model protein. The CMG2-Fc fusion protein was produced transiently through vacuum agroinfiltration, with and without kifunensine at a concentration of 5.4 µM in the agroinfiltration suspension. The CMG2-Fc N-glycan profile was determined using LC-MS/MS with a targeted dynamic multiple reaction monitoring (MRM) method. The CMG2-Fc expression level in the infiltrated plant tissue and the percentage of oligomannose-type N-glycans for kifunensine treated plants was 874 mg/kg leaf fresh weight (FW) and 98.2%, respectively, compared to 717 mg/kg leaf FW and 2.3% for untreated plants. Oligomannose glycans are amenable to in vitro enzymatic modification to produce more human-like N-glycan structures that are preferred for the production of HIV-1 viral vaccine and certain monoclonal antibodies. This method allows glycan modifications using a bioprocessing approach without compromising protein yield or modification of the primary sequence, and could be expanded to other small molecule inhibitors of glycan-processing enzymes. For recombinant protein targeted for secretion, kifunensine treatment allows collection of glycoform-modified target protein from apoplast wash fluid (AWF) with minimal plant-specific complex N-glycan at higher starting purity and concentration than in whole-leaf extract, thus simplifying the downstream processing
    corecore