219,095 research outputs found
Optical properties of TlNi2Se2: Observation of pseudogap formation
The quasi-two-dimensional nickel chalcogenides is a newly
discovered superconductor. We have performed optical spectroscopy study on
single crystals over a broad frequency range at various
temperatures. The overall optical reflectance spectra are similar to those
observed in its isostructure . Both the suppression in
and the peaklike feature in suggest the progressive
formation of a pseudogap feature in the midinfrared range with decreasing
temperatures, which might be originated from the dynamic local fluctuation of
charge-density-wave (CDW) instability. We propose that the CDW instability in
is driven by the saddle points mechanism, due to the existence of
van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure
Superfluidity of hyperons in neutron stars
We study the superfluidity of hyperons in neutron star
matter and neutron stars. We use the relativistic mean field (RMF) theory to
calculate the properties of neutron star matter. In the RMF approach, the
meson-hyperon couplings are constrained by reasonable hyperon potentials that
include the updated information from recent developments in hypernuclear
physics. To examine the pairing gap of hyperons, we employ
several interactions based on the Nijmegen models and used in
double- hypernuclei studies. It is found that the maximal pairing gap
obtained is a few tenths of a MeV. The magnitude and the density region of the
pairing gap are dependent on the interaction and the treatment
of neutron star matter. We calculate neutron star properties and find that
whether the superfluidity of hyperons exists in the core of
neutron stars mainly depends on the interaction used.Comment: 22 pages, 2 Tables, 6 Figur
The dynamical fate of planetary systems in young star clusters
We carry out N-body simulations to examine the effects of dynamical
interactions on planetary systems in young open star clusters. We explore how
the planetary populations in these star clusters evolve, and how this evolution
depends on the initial amount of substructure, the virial ratio, the cluster
mass and density, and the initial semi-major axis of the planetary systems. The
fraction of planetary systems that remains intact as a cluster member, fbps, is
generally well-described by the functional form fbps=f0(1+[a/a0]^c)^-1, where
(1-f0) is the fraction of stars that escapes from the cluster, a0 the critical
semi-major axis for survival, and c a measure for the width of the transition
region. The effect of the initial amount of substructure over time can be
quantified as fbps=A(t)+B(D), where A(t) decreases nearly linearly with time,
and B(D) decreases when the clusters are initially more substructured. Provided
that the orbital separation of planetary systems is smaller than the critical
value a0, those in clusters with a higher initial stellar density (but
identical mass) have a larger probability of escaping the cluster intact. These
results help us to obtain a better understanding of the difference between the
observed fractions of exoplanets-hosting stars in star clusters and in the
Galactic field. It also allows us to make predictions about the free-floating
planet population over time in different stellar environments.Comment: 14 pages, 9 figures, accepted for publication in MNRA
Optical spectroscopy study of the collapsed tetragonal phase of CaFe(AsP) single crystals
We present an optical spectroscopy study on P-doped CaFeAs which
experiences a structural phase transition from tetragonal to collapsed
tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of
low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4
eV) in optical conductivity across the transition, indicating an abrupt
reconstruction of band structure. The appearance of new feature is related to
the interband transition arising from the sinking of hole bands near
point below Fermi level in the cT phase, as expected from the density function
theory calculations in combination with the dynamical mean field theory.
However, the reduction of Drude spectral weight is at variance with those
calculations. The measurement also indicates an absence of the abnormal
spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase,
suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure
Acoustic particle separation
A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well
BCS-BEC crossover in bilayers of cold fermionic polar molecules
We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body effects and is strongly affected by the intralayer interaction which was ignored in previous studies
Coexistence and competition of multiple charge-density-wave orders in rare-earth tri-telluride RTe3
The occurrences of collective quantum states, such as superconductivity (SC)
and charge- or spin-densitywaves (CDWs or SDWs), are among the most fascinating
phenomena in solids. To date much effort has been made to explore the interplay
between different orders, yet little is known about the relationship of
multiple orders of the same type. Here we report optical spectroscopy study on
CDWs in the rare-earth tri-telluride compounds RTe3 (R = rare earth elements).
Besides the prior reported two CDW orders, the study reveals unexpectedly the
presence of a third CDW order in the series which evolves systematically with
the size of R element. With increased chemical pressure, the first and third
CDW orders are both substantially suppressed and compete with the second one by
depleting the low energy spectral weight. A complete phase diagram for the
multiple CDW orders in this series is established.Comment: 7 pages, 4 figures, 1 tabl
- …
