219,095 research outputs found

    Optical properties of TlNi2Se2: Observation of pseudogap formation

    Full text link
    The quasi-two-dimensional nickel chalcogenides TlNi2Se2TlNi_2Se_2 is a newly discovered superconductor. We have performed optical spectroscopy study on TlNi2Se2TlNi_2Se_2 single crystals over a broad frequency range at various temperatures. The overall optical reflectance spectra are similar to those observed in its isostructure BaNi2As2BaNi_2As_2. Both the suppression in R(ω)R(\omega) and the peaklike feature in σ1(ω)\sigma_1(\omega) suggest the progressive formation of a pseudogap feature in the midinfrared range with decreasing temperatures, which might be originated from the dynamic local fluctuation of charge-density-wave (CDW) instability. We propose that the CDW instability in TlNi2Se2TlNi_2Se_2 is driven by the saddle points mechanism, due to the existence of van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure

    Superfluidity of Λ\Lambda hyperons in neutron stars

    Full text link
    We study the 1S0^1S_0 superfluidity of Λ\Lambda hyperons in neutron star matter and neutron stars. We use the relativistic mean field (RMF) theory to calculate the properties of neutron star matter. In the RMF approach, the meson-hyperon couplings are constrained by reasonable hyperon potentials that include the updated information from recent developments in hypernuclear physics. To examine the 1S0^1S_0 pairing gap of Λ\Lambda hyperons, we employ several ΛΛ\Lambda\Lambda interactions based on the Nijmegen models and used in double-Λ\Lambda hypernuclei studies. It is found that the maximal pairing gap obtained is a few tenths of a MeV. The magnitude and the density region of the pairing gap are dependent on the ΛΛ\Lambda\Lambda interaction and the treatment of neutron star matter. We calculate neutron star properties and find that whether the 1S0^1S_0 superfluidity of Λ\Lambda hyperons exists in the core of neutron stars mainly depends on the ΛΛ\Lambda\Lambda interaction used.Comment: 22 pages, 2 Tables, 6 Figur

    The dynamical fate of planetary systems in young star clusters

    Full text link
    We carry out N-body simulations to examine the effects of dynamical interactions on planetary systems in young open star clusters. We explore how the planetary populations in these star clusters evolve, and how this evolution depends on the initial amount of substructure, the virial ratio, the cluster mass and density, and the initial semi-major axis of the planetary systems. The fraction of planetary systems that remains intact as a cluster member, fbps, is generally well-described by the functional form fbps=f0(1+[a/a0]^c)^-1, where (1-f0) is the fraction of stars that escapes from the cluster, a0 the critical semi-major axis for survival, and c a measure for the width of the transition region. The effect of the initial amount of substructure over time can be quantified as fbps=A(t)+B(D), where A(t) decreases nearly linearly with time, and B(D) decreases when the clusters are initially more substructured. Provided that the orbital separation of planetary systems is smaller than the critical value a0, those in clusters with a higher initial stellar density (but identical mass) have a larger probability of escaping the cluster intact. These results help us to obtain a better understanding of the difference between the observed fractions of exoplanets-hosting stars in star clusters and in the Galactic field. It also allows us to make predictions about the free-floating planet population over time in different stellar environments.Comment: 14 pages, 9 figures, accepted for publication in MNRA

    Optical spectroscopy study of the collapsed tetragonal phase of CaFe2_2(As0.935_{0.935}P0.065_{0.065})2_2 single crystals

    Full text link
    We present an optical spectroscopy study on P-doped CaFe2_2As2_2 which experiences a structural phase transition from tetragonal to collapsed tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4 eV) in optical conductivity across the transition, indicating an abrupt reconstruction of band structure. The appearance of new feature is related to the interband transition arising from the sinking of hole bands near Γ\Gamma point below Fermi level in the cT phase, as expected from the density function theory calculations in combination with the dynamical mean field theory. However, the reduction of Drude spectral weight is at variance with those calculations. The measurement also indicates an absence of the abnormal spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase, suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure

    Acoustic particle separation

    Get PDF
    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well

    BCS-BEC crossover in bilayers of cold fermionic polar molecules

    Get PDF
    We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body effects and is strongly affected by the intralayer interaction which was ignored in previous studies

    Coexistence and competition of multiple charge-density-wave orders in rare-earth tri-telluride RTe3

    Full text link
    The occurrences of collective quantum states, such as superconductivity (SC) and charge- or spin-densitywaves (CDWs or SDWs), are among the most fascinating phenomena in solids. To date much effort has been made to explore the interplay between different orders, yet little is known about the relationship of multiple orders of the same type. Here we report optical spectroscopy study on CDWs in the rare-earth tri-telluride compounds RTe3 (R = rare earth elements). Besides the prior reported two CDW orders, the study reveals unexpectedly the presence of a third CDW order in the series which evolves systematically with the size of R element. With increased chemical pressure, the first and third CDW orders are both substantially suppressed and compete with the second one by depleting the low energy spectral weight. A complete phase diagram for the multiple CDW orders in this series is established.Comment: 7 pages, 4 figures, 1 tabl
    corecore