11,171 research outputs found

    Landau Ghosts and Anti-Ghosts in Condensed Matter and High Density Hadronic Matter

    Get PDF
    It is observed that the ``ghost'' (originally discovered by Landau in quantum electro-dynamics) and its counterparts in other theories are indeed ubiquitous as they occur in a one-loop approximation to any conventional (unbroken) gauge theory. The mechanism is first exposed in its generality via the Dyson equation and a simple but explicit example in condensed matter is provided through the static Clausius-Mossotti and its dynamic counterpart the Lorenz-Lorentz equation. The physical phase transition phenomenon associated with it is found to be super-radiance. We verify quantitatively that water (and many other polar liquids) are indeed super-radiant at room temperature. In quantum chromo-dynamics on the other hand, we encounter, thanks to asymptotic freedom, an ``anti-ghost'' which is closely associated with color confinement. Thus, in QCD, free quarks and glue exist in a super-radiant phase and hadronic matter in the normal one.Comment: LaTeX 12 Pages and 2 *.eps Figure

    Formation of a rotating jet during the filament eruption on 10-11 April 2013

    Full text link
    We analyze multi-wavelength and multi-viewpoint observations of a helically twisted plasma jet formed during a confined filament eruption on 10-11 April 2013. Given a rather large scale event with its high spatial and temporal resolution observations, it allows us to clearly understand some new physical details about the formation and triggering mechanism of twisting jet. We identify a pre-existing flux rope associated with a sinistral filament, which was observed several days before the event. The confined eruption of the filament within a null point topology, also known as an Eiffel tower (or inverted-Y) magnetic field configuration results in the formation of a twisted jet after the magnetic reconnection near a null point. The sign of helicity in the jet is found to be the same as that of the sign of helicity in the filament. Untwisting motion of the reconnected magnetic field lines gives rise to the accelerating plasma along the jet axis. The event clearly shows the twist injection from the pre-eruptive magnetic field to the jet.Comment: 14 pages, 12 figures, to appear in MNRA

    Spectroscopic Observations and Modelling of Impulsive Alfv\'en Waves Along a Polar Coronal Jet

    Full text link
    Using the Hinode/EIS 2"" spectroscopic observations, we study the intensity, velocity, and FWHM variations of the strongest Fe XII 195.12 \AA\ line along the jet to find the signature of Alfv\'en waves. We simulate numerically the impulsively generated Alfv\'en waves within the vertical Harris current-sheet, forming the jet plasma flows, and mimicking their observational signatures. Using the FLASH code and the atmospheric model with embedded weakly expanding magnetic field configuration within a vertical Harris current-sheet, we solve the two and half-dimensional (2.5-D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfv\'en waves and vertical flows forming the plasma jet. At a height of 5 Mm\sim 5~\mathrm{Mm} from the base of the jet, the red-shifted velocity component of Fe XII 195.12 \AA\ line attains its maximum (5 kms15~\mathrm{km\,s}^{-1}) which converts into a blue-shifted one between the altitude of 510 Mm5-10~\mathrm{Mm}. The spectral intensity continously increases up to 10 Mm10~\mathrm{Mm}, while FWHM still exhibits the low values with almost constant trend. This indicates that the reconnection point within the jet's magnetic field topology lies in the corona 510 Mm5-10~\mathrm{Mm} from its footpoint anchored in the Sun's surface. Beyond this height, FWHM shows a growing trend. This may be the signature of Alfv\'en waves that impulsively evolve due to reconnection and propagate along the jet. From our numerical data, we evaluate space- and time- averaged Alfv\'en waves velocity amplitudes at different heights in the jet's current-sheet, which contribute to the non-thermal motions and spectral line broadening. The synthetic width of Fe XII 195.12 A˚195.12~\mathrm{\AA} line exhibits similar trend of increment as in the observational data, possibly proving the existence of impulsively generated (by reconnection) Alfv\'en waves which propagate along the jet

    On Thermal-Pulse-Driven Plasma Flows in Coronal Funnels as Observed by Hinode/EUV Imaging Spectrometer (EIS)

    Full text link
    Using one-arcsecond-slit scan observations from the Hinode/EUV Imaging Spectrometer (EIS) on 05 February 2007, we find the plasma outflows in the open and expanding coronal funnels at the eastern boundary of AR 10940. The Doppler velocity map of Fe XII 195.120 A shows that the diffuse close-loop system to be mostly red-shifted. The open arches (funnels) at the eastern boundary of AR exhibit blue-shifts with a maximum speed of about 10-15 km/s. This implies outflowing plasma through these magnetic structures. In support of these observations, we perform a 2D numerical simulation of the expanding coronal funnels by solving the set of ideal MHD equations in appropriate VAL-III C initial temperature conditions using the FLASH code. We implement a rarefied and hotter region at the footpoint of the model funnel, which results in the evolution of slow plasma perturbations propagating outward in the form of plasma flows. We conclude that the heating, which may result from magnetic reconnection, can trigger the observed plasma outflows in such coronal funnels. This can transport mass into the higher corona, giving rise to the formation of the nascent solar wind.Comment: 17 Pages; 7 Figure
    corecore