2,884 research outputs found
Causality in the Semantics of Esterel: Revisited
We re-examine the challenges concerning causality in the semantics of Esterel
and show that they pertain to the known issues in the semantics of Structured
Operational Semantics with negative premises. We show that the solutions
offered for the semantics of SOS also provide answers to the semantic
challenges of Esterel and that they satisfy the intuitive requirements set by
the language designers
Optical properties of Fano-resonant metallic metasurfaces on a substrate
Three different periodic optical metasurfaces exhibiting Fano resonances are
studied in mid-IR frequency range in the presence of a substrate. We develop a
rigorous semi-analytical technique and calculate how the presence of a
substrate affects optical properties of these structures. An analytical minimal
model based on the truncated exact technique is introduced and is shown to
provide a simple description of the observed behavior. We demonstrate that the
presence of a substrate substantially alters the collective response of the
structures suppressing Wood's anomalies and spatial dispersion of the
resonances. Different types of Fano resonances are found to be affected
differently by the optical contrast between the substrate and the superstrate.
The dependence of the spectral position of the resonances on the
substrate/superstrate permittivities is studied and the validity of the widely
used effective medium approaches is re-examined
Topologically protected elastic waves in phononic metamaterials
Topological states of quantum matter exhibit unique disorder-immune surface
states protected by underlying nontrivial topological invariants of the bulk.
Such immunity from backscattering makes topological surface or edge states
ideal carriers for both classical and quantum information. So far, topological
matters have been explored only in the realms of electronics and photonics,
with limited range of bulk properties and largely immutable materials. These
constraints thus impose severe performance trade-offs in experimentally
realizable topologically ordered states. In contrast, phononic metamaterials
not only provide access to a much wider range of material properties, but also
allow temporal modulation in the non-adiabatic regime. Here, from the
first-principles we demonstrate numerically the first phononic topological
metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A
dual-scale phononic crystal slab is used to support two effective spins of
phonon over a broad bandwidth, and strong spin-orbit coupling is realized by
breaking spatial mirror symmetry. By preserving the spin polarization with an
external load or spatial symmetry, phononic edge states are shown to be robust
against scattering from discrete defects as well as disorders in the continuum.
Our system opens up the possibility of realizing topological materials for
phonons in both static and time-dependent regimes.Comment: 19 pages, 6 figure
On the Order of the Schur Multiplier of a Pair of Finite p-Groups
In 1998, G. Ellis defined the Schur multiplier of a pair of groups
and mentioned that this notion is a useful tool for studying pairs of groups.
In this paper, we characterize the structure of a pair of finite -groups
in terms of the order of the Schur multiplier of under some
conditions.Comment: 11 pages, to appear in Journal of Advanced Research in Pure
Mathematic
Trapping and guiding surface plasmons in curved graphene landscapes
We demonstrate that graphene placed on top of structured substrates offers a
novel approach for trapping and guiding surface plasmons. A monolayer graphene
with a spatially varying curvature exhibits an effective trapping potential for
graphene plasmons near curved areas such as bumps, humps and wells. We derive
the governing equation for describing such localized channel plasmons guided by
curved graphene and validate our theory by the first-principle numerical
simulations. The proposed confinement mechanism enables plasmon guiding by the
regions of maximal curvature, and it offers a versatile platform for
manipulating light in planar landscapes. In addition, isolated deformations of
graphene such as bumps are shown to support localized surface modes and
resonances suggesting a new way to engineer plasmonic metasurfaces.Comment: 6 pages, 4 figure
A Deep Learning Approach to Structured Signal Recovery
In this paper, we develop a new framework for sensing and recovering
structured signals. In contrast to compressive sensing (CS) systems that employ
linear measurements, sparse representations, and computationally complex
convex/greedy algorithms, we introduce a deep learning framework that supports
both linear and mildly nonlinear measurements, that learns a structured
representation from training data, and that efficiently computes a signal
estimate. In particular, we apply a stacked denoising autoencoder (SDA), as an
unsupervised feature learner. SDA enables us to capture statistical
dependencies between the different elements of certain signals and improve
signal recovery performance as compared to the CS approach
Quantum Dynamics in a Time-dependent Hard-Wall Spherical Trap
Exact solution of the Schr\"{o}dinger equation is given for a particle inside
a hard sphere whose wall is moving with a constant velocity. Numerical
computations are presented for both contracting and expanding spheres. The
propagator is constructed and compared with the propagator of a particle in an
infinite square well with one wall in uniform motion.Comment: 6 pages, 4 figures, Accepted by Europhys. Let
Occurrence and histopathology of Ascocotyle tenuicollis metacercaria in gill of platyfish (Xiphophorus maculatus) imported to Iran
The objective of this study was to determine the prevalence of metacercarial infection in plathyfish imported to Iran. A total of 100 imported live common platyfish (Xiphophorus maculatus) from approximately 24 shipments were collected from a quarantine facility in Iran in 2007 and examined in our veterinary laboratory. Among 800 examined gill arches about 1300 cysts were found in different locations of gill filaments and were identified as a heterophyid parasite metacercaria Ascocotyle (Ascocotyle) tenuicollis Price, 1935. The prevalence of this parasite was 58%, the maximum and minimum quantity of metacercarial cysts per infected platyfish were 70 and 10, respectively. The adult worms are non-pathogenic and are intestinal parasites of piscivorous birds (e.g. Heron and Egret) and mammals. The first intermediate hosts are snails and the second intermediate hosts are centrarchiid, cyprinodontid, mugilid, and poeciliid fishes. Histopathologic examination of the infected fish gills revealed cartilage proliferation around metacercarial cysts, hyperplasia, hypertrophy and fusion in the affected gill filaments. To our knowledge, this is the first report of infection with Ascocotyle tenuicollis in the imported platyfish in Iran
- …
