586 research outputs found
Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal
This paper is devoted to a detailed analysis of the new type of the undulator
radiation generated by an ultra-relativistic charged particle channeling along
a crystal plane, which is periodically bent by a transverse acoustic wave, as
well as to the conditions limiting the observation of this phenomenon. This
mechanism makes feasible the generation of electromagnetic radiation, both
spontaneous and stimulated, emitted in a wide range of the photon energies,
from X- up to gamma-rays
Technical enhancement of TMA sites for data safety & cost efficiency
Current developments of deep sea data telemetry system (capsules, inductive, acoustics) will be reviewed and further developments performed. Technical enhancement will be demonstrated at selected sites and with different platforms (e.g. Myrtle-X lander
Electrical properties of ZnO nanorods studied by conductive atomic force microscopy
ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, we present a complementary electrical characterization of individual upright standing and lying ZnO nanorods using conductive atomic force microscopy (C-AFM). Initially, the electrical properties of the arrays of upright standing ZnO NRs were characterized using two-dimensional current maps. The current maps were recorded simultaneously with the topography acquired by contact mode AFM. Further, C-AFM was utilized to determine the local current-voltage (I-V) characteristics of the top and side facets of individual upright standing NRs. Current-voltage characterization revealed a characteristic similar to that of a Schottky diode. Detailed discussion of the electrical properties is based on local I-V curves, as well as on the 2D current maps recorded from specific areas. © 2011 American Institute of Physics.published_or_final_versio
Channeling of Positrons through Periodically Bent Crystals: on Feasibility of Crystalline Undulator and Gamma-Laser
The electromagnetic radiation generated by ultra-relativistic positrons
channelling in a crystalline undulator is discussed. The crystalline undulator
is a crystal whose planes are bent periodically with the amplitude much larger
than the interplanar spacing. Various conditions and criteria to be fulfilled
for the crystalline undulator operation are established. Different methods of
the crystal bending are described. We present the results of numeric
calculations of spectral distributions of the spontaneous radiation emitted in
the crystalline undulator and discuss the possibility to create the stimulated
emission in such a system in analogy with the free electron laser. A careful
literature survey covering the formulation of all essential ideas in this field
is given. Our investigation shows that the proposed mechanism provides an
efficient source for high energy photons, which is worth to study
experimentally.Comment: 52 pages, MikTeX, 14 figure
Gravitation, electromagnetism and cosmological constant in purely affine gravity
The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field,
that has the form of the Maxwell Lagrangian with the metric tensor replaced by
the symmetrized Ricci tensor, is dynamically equivalent to the metric
Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric
tensor is not well-defined. This feature indicates that, for the
Ferraris-Kijowski model to be physical, there must exist a background field
that depends on the Ricci tensor. The simplest possibility, supported by recent
astronomical observations, is the cosmological constant, generated in the
purely affine formulation of gravity by the Eddington Lagrangian. In this paper
we combine the electromagnetic field and the cosmological constant in the
purely affine formulation. We show that the sum of the two affine (Eddington
and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of
the analogous (CDM and Einstein-Maxwell) Lagrangians in the
metric-affine/metric formulation. We also show that such a construction is
valid, like the affine Einstein-Born-Infeld formulation, only for weak
electromagnetic fields, on the order of the magnetic field in outer space of
the Solar System. Therefore the purely affine formulation that combines
gravity, electromagnetism and cosmological constant cannot be a simple sum of
affine terms corresponding separately to these fields. A quite complicated form
of the affine equivalent of the metric Einstein-Maxwell- Lagrangian
suggests that Nature can be described by a simpler affine Lagrangian, leading
to modifications of the Einstein-Maxwell-CDM theory for
electromagnetic fields that contribute to the spacetime curvature on the same
order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio
Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET
We present results on searches for gamma-ray counterparts of the LIGO/Virgo
gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET})
observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes
gamma-rays from GeV up to 10 TeV with a field of view of nearly 2 sr.
In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views 3 sr
and sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV
bands, respectively, by using two different crystal scintillators. The {\sl
CALET} observations on the International Space Station started in October 2015,
and here we report analyses of events associated with the following
gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817.
Although only upper limits on gamma-ray emission are obtained, they correspond
to a luminosity of erg s in the GeV energy band
depending on the distance and the assumed time duration of each event, which is
approximately the order of luminosity of typical short gamma-ray bursts. This
implies there will be a favorable opportunity to detect high-energy gamma-ray
emission in further observations if additional gravitational wave events with
favorable geometry will occur within our field-of-view. We also show the
sensitivity of {\sl CALET} for gamma-ray transient events which is the order of
~erg\,cm\,s for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in
Astrophysical Journa
On-orbit Operations and Offline Data Processing of CALET onboard the ISS
The CALorimetric Electron Telescope (CALET), launched for installation on the
International Space Station (ISS) in August, 2015, has been accumulating
scientific data since October, 2015. CALET is intended to perform long-duration
observations of high-energy cosmic rays onboard the ISS. CALET directly
measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20
TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can
measure the spectrum of gamma rays well into the TeV range, and the spectra of
protons and nuclei up to a PeV.
In order to operate the CALET onboard ISS, JAXA Ground Support Equipment
(JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established.
Scientific operations using CALET are planned at WCOC, taking into account
orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences
are used to control the CALET observation modes on orbit. Calibration data
acquisition by, for example, recording pedestal and penetrating particle
events, a low-energy electron trigger mode operating at high geomagnetic
latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic
latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit
while maintaining maximum exposure to high-energy electrons and other
high-energy shower events by always having the high-energy trigger mode active.
The WCOC also prepares and distributes CALET flight data to collaborators in
Italy and the United States.
As of August 31, 2017, the total observation time is 689 days with a live
time fraction of the total time of approximately 84%. Nearly 450 million events
are collected with a high-energy (E>10 GeV) trigger. By combining all operation
modes with the excellent-quality on-orbit data collected thus far, it is
expected that a five-year observation period will provide a wealth of new and
interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
- …