8,010 research outputs found
Continuous Transition between Antiferromagnetic Insulator and Paramagnetic Metal in the Pyrochlore Iridate Eu2Ir2O7
Our single crystal study of the magneto-thermal and transport properties of
the pyrochlore iridate Eu2Ir2O7 reveals a continuous phase transition from a
paramagnetic metal to an antiferromagnetic insulator for a sample with
stoichiometry within ~1% resolution. The insulating phase has strong proximity
to an antiferromagnetic semimetal, which is stabilized by several % level of
the off-stoichiometry. Our observations suggest that in addition to electronic
correlation and spin-orbit coupling the magnetic order is essential for opening
the charge gap.Comment: 6 pages, 6 figure
Transport in gapped bilayer graphene: the role of potential fluctuations
We employ a dual-gated geometry to control the band gap \Delta in bilayer
graphene and study the temperature dependence of the resistance at the charge
neutrality point, RNP(T), from 220 to 1.5 K. Above 5 K, RNP(T) is dominated by
two thermally activated processes in different temperature regimes and exhibits
exp(T3/T)^{1/3} below 5 K. We develop a simple model to account for the
experimental observations, which highlights the crucial role of localized
states produced by potential fluctuations. The high temperature conduction is
attributed to thermal activation to the mobility edge. The activation energy
approaches \Delta /2 at large band gap. At intermediate and low temperatures,
the dominant conduction mechanisms are nearest neighbor hopping and
variable-range hopping through localized states. Our systematic study provides
a coherent understanding of transport in gapped bilayer graphene.Comment: to appear in Physical Review B: Rapid Com
Including Maximum Sustained Wind Speed in a Time Series Model to Forecast Hurricane Movement
Techniques for applying time series fundamentals to forecasting hurricane movement are thoroughly examined in this research. The objectives are: (1) to modify Dr. Thomas Curry\u27s threshold autoregressive time series model to improve its ability to forecast hurricane movement, (2) to forecast the maximum sustained wind speed for a hurricane, and (3) to identify if wind speed should be included as an explanatory variable to aid in forecasting hurricane movement. Eleven different models to predict the latitude, longitude and maximum sustained wind speed are compared and contrasted with Curry\u27s bivariate time series model. The results showed the modifications allow significant forecasting improvement to Curry\u27s model in the 6-, 12-, 24-, 48- and 72-hour forecasts. The model recommended by this research shows a significant improvement in mean and variance of the overall forecast errors
Failure of classical elasticity in auxetic foams
A recent derivation [P.H. Mott and C.M. Roland, Phys. Rev. B 80, 132104
(2009).] of the bounds on Poisson's ratio, v, for linearly elastic materials
showed that the conventional lower limit, -1, is wrong, and that v cannot be
less than 0.2 for classical elasticity to be valid. This is a significant
result, since it is precisely for materials having small values of v that
direct measurements are not feasible, so that v must be calculated from other
elastic constants. Herein we measure directly Poisson's ratio for four
materials, two for which the more restrictive bounds on v apply, and two having
values below this limit of 0.2. We find that while the measured v for the
former are equivalent to values calculated from the shear and tensile moduli,
for two auxetic materials (v < 0), the equations of classical elasticity give
inaccurate values of v. This is experimental corroboration that the correct
lower limit on Poisson's ratio is 0.2 in order for classical elasticity to
apply.Comment: 9 pages, 2 figure
Wave functions in the neighborhood of a toroidal surface; hard vs. soft constraint
The curvature potential arising from confining a particle initially in
three-dimensional space onto a curved surface is normally derived in the hard
constraint limit, with the degree of freedom normal to the
surface. In this work the hard constraint is relaxed, and eigenvalues and wave
functions are numerically determined for a particle confined to a thin layer in
the neighborhood of a toroidal surface. The hard constraint and finite layer
(or soft constraint) quantities are comparable, but both differ markedly from
those of the corresponding two dimensional system, indicating that the
curvature potential continues to influence the dynamics when the particle is
confined to a finite layer. This effect is potentially of consequence to the
modelling of curved nanostructures.Comment: 4 pages, no fig
Magnetic properties of interacting, disordered electron systems in d=2 dimensions
We compute the magnetic susceptibilities of interacting electrons in the
presence of disorder on a two-dimensional square lattice by means of quantum
Monte Carlo simulations. Clear evidence is found that at sufficiently low
temperatures disorder can lead to an enhancement of the ferromagnetic
susceptibility. We show that it is not related to the transition from a metal
to an Anderson insulator in two dimensions, but is a rather general low
temperature property of interacting, disordered electronic systems.Comment: 5 pages, 6 figure
Analysis of broadband microwave conductivity and permittivity measurements of semiconducting materials
We perform broadband phase sensitive measurements of the reflection
coefficient from 45 MHz up to 20 GHz employing a vector network analyzer with a
2.4 mm coaxial sensor which is terminated by the sample under test. While the
material parameters (conductivity and permittivity) can be easily extracted
from the obtained impedance data if the sample is metallic, no direct solution
is possible if the material under investigation is an insulator. Focusing on
doped semiconductors with largely varying conductivity, here we present a
closed calibration and evaluation procedure for frequencies up to 5 GHz, based
on the rigorous solution for the electromagnetic field distribution inside the
sample combined with the variational principle; basically no limiting
assumptions are necessary. A simple static model based on the electric current
distribution proves to yield the same frequency dependence of the complex
conductivity up to 1 GHz. After a critical discussion we apply the developed
method to the hopping transport in Si:P at temperature down to 1 K.Comment: 9 pages, 10 figures, accepted for publication in the Journal of
Applied Physic
Quantum Spin Hall Effect
The quantum Hall liquid is a novel state of matter with profound emergent
properties such as fractional charge and statistics. Existence of the quantum
Hall effect requires breaking of the time reversal symmetry caused by an
external magnetic field. In this work, we predict a quantized spin Hall effect
in the absence of any magnetic field, where the intrinsic spin Hall conductance
is quantized in units of . The degenerate quantum Landau
levels are created by the spin-orbit coupling in conventional semiconductors in
the presence of a strain gradient. This new state of matter has many profound
correlated properties described by a topological field theory
Electron Transport in Nanogranular Ferromagnets
We study electronic transport properties of ferromagnetic nanoparticle arrays
and nanodomain materials near the Curie temperature in the limit of weak
coupling between the grains. We calculate the conductivity in the Ohmic and
non-Ohmic regimes and estimate the magnetoresistance jump in the resistivity at
the transition temperature. The results are applicable for many emerging
materials, including artificially self-assembled nanoparticle arrays and a
certain class of manganites, where localization effects within the clusters can
be neglected.Comment: 4 pages, 2 figure
- …