70 research outputs found
Design and pharmacological evaluation of Ibuprofen amides derivatives as dual FAAH/COX inhibitors
Fatty acid amide hydrolase (FAAH) is a serine hydrolase enzyme responsible of the hydrolytic degradation of N-acylethanolamine endocannabinoids, such as the Arachidonoylethanolamide (anandamide, AEA), which it has been shown to alleviate pain and inflammation (1). In particular, the anti-nociceptive and anti-inflammatory effects of AEA could be enhanced by the simultaneous block of FAAH and COX enzymes (2). For this reason, several studies have been carried out in order to develop new FAAH/COX inhibitors (2). In 1997 it was reported that the NSAID ibuprofen inhibited FAAH, although with a modest potency (3), and successively the first dual inibhitor, the amide derivative of ibuprofen with a 2-amino-3-methylpyridine side chain (Ibu-AM5) was reported (4). -5). Benzylamides and piperazinoamides analogs of Ibuprofen have been also designed as less potent FAAH inhibitors than Ibu-AM5 (5). Here, I discuss the computational studies and the structure–activity relationships leading to the design, of novel Ibuprofen amide derivatives with a higher inhibition potency of FAAH and COX, which represent novel powerful anti-nociceptive agents
Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen
Inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. N-(3-Bromopyridin-2-yl)−2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [3H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a Ki value of 0.26 µM and an α value of 4.9. At a concentration of 10 µM, the compound did not inhibit the cyclooxygenation of arachidonic acid by either ovine COX-1 or human recombinant COX-2. However, this concentration of Ibu-AM68 greatly reduced the ability of the COX-2 to catalyse the cyclooxygenation of the endocannabinoid 2-arachidonoylglycerol. It is concluded that Ibu-AM68 is a dual-acting FAAH/substrate-selective COX inhibitor
Synthesis, biological evaluation and metadynamics simulations of novel N-methyl β-sheet breaker peptides as inhibitors of Alzheimer's β-amyloid fibrillogenesis
Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of β-amyloid proteins in the brain. Because Aβ is self-assembling, one possible design strategy is to inhibit the aggregation of Aβ peptides using short peptide fragments homologous to the full-length wild-type Aβ protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called β-sheet breaker peptides (BSBPs). Herein, we present the synthesis of novel (cell-permeable) N-methyl BSBPs, designed based on literature information on the structural key features of BSBPs. Three-dimensional GRID-based pharmacophore peptide screening combined with PT-WTE metadynamics was performed to support the results of the design and microwave-assisted synthesis of peptides 2 and 3 prepared and analyzed for their fibrillogenesis inhibition activity and cytotoxicity. An HR-MS-based cell metabolomic approach highlighted their cell permeability properties
3D GRID-based pharmacophore and Metadynamics approaches for the rational design of N-Methyl β-sheet breaker peptides as inhibitors of the Alzheimer's Aβ-amyloid fibrillogenesis
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the loss of the cognitive functions and dementia. Several scientific evidences report that a central role in the pathogenesis of AD is played by the brain deposition of insoluble aggregates of β-amyloid protein (Aβ) proteins, thus causing neuronal cell death [1]. For this reason, one of the promising approach is to inhibit the aggregation of Aβ peptides. Because Aβ is self-assembling, one possible strategy to prevent this process is to use short peptide fragments homologous to the full-length wild-type Aβ protein. From this consideration, several short synthetic peptides were designed as beta-sheet breakers (BSB) [2]. In particular, the pentapetide Ac-LPFFD-NH2 (iAβ5p) exhibited a certain capability to inhibit Aβ fibrillogenesis [3]. iAβ5p analogs [4] were, then, designed by introducing N-Methylation at the amide bond nitrogen were also promising BSB. Here, we describe the methodological approach, which combines 3D GRID-based pharmacophore peptide screening with Well-Tempered Metadynamics simulations aimed to the discovery of novel N-Methylated BSB. This approach led us to identify two promising, cell permeable, N-Methylated peptides that were further evaluated for their BSB properties showing a significant improvement of the fibrillogenesis inhibition with respect to the lead iAβ5p
Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain
The coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by the severe acute respiratory syndrome coronavirus (SARS)-CoV-2. In light of the urgent need to identify novel approaches to be used in the emergency phase, we have embarked on an exploratory campaign aimed at repurposing natural substances and clinically available drugs as potential anti-SARS-CoV2-2 agents by targeting viral proteins. Here we report on a strategy based on the virtual screening of druggable pockets located in the central β-sheet core of the SARS-CoV-2 Spike's protein receptor binding domain (RBD). By combining an in silico approach and molecular in vitro testing we have been able to identify several triterpenoid/steroidal agents that inhibit interaction of the Spike RBD with the carboxypeptidase domain of the Angiotensin Converting Enzyme (ACE2). In detail, we provide evidence that potential binding sites exist in the RBD of the SARS CoV-2 Spike protein and that occupancy of these pockets reduces the ability of the RBD to bind to the ACE2 consensus in vitro. Naturally occurring and clinically available triterpenoids such as glycyrrhetinic and oleanolic acids, as well as primary and secondary bile acids and their amidated derivatives such as glyco-ursodeoxycholic acid and semi-synthetic derivatives such as obeticholic acid reduces the RBD/ACE2 binding. In aggregate, these results might help to define novel approaches to COVID-19 based on SARS-CoV-2 entry inhibitors
Design, synthesis and in vitro and in vivo biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents
Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds
The economic impact of moderate stage Alzheimer's disease in Italy: Evidence from the UP-TECH randomized trial
Background: There is consensus that dementia is the most burdensome disease for modern societies. Few cost-of-illness studies examined the complexity of Alzheimer's disease (AD) burden, considering at the same time health and social care, cash allowances, informal care, and out-of-pocket expenditure by families. Methods: This is a comprehensive cost-of-illness study based on the baseline data from a randomized controlled trial (UP-TECH) enrolling 438 patients with moderate AD and their primary caregiver living in the community. Results: The societal burden of AD, composed of public, patient, and informal care costs, was about �20,000/yr. Out of this, the cost borne by the public sector was �4,534/yr. The main driver of public cost was the national cash-for-care allowance (�2,324/yr), followed by drug prescriptions (�1,402/yr). Out-of-pocket expenditure predominantly concerned the cost of private care workers. The value of informal care peaked at �13,590/yr. Socioeconomic factors do not influence AD public cost, but do affect the level of out-of-pocket expenditure. Conclusion: The burden of AD reflects the structure of Italian welfare. The families predominantly manage AD patients. The public expenditure is mostly for drugs and cash-for-care benefits. From a State perspective in the short term, the advantage of these care arrangements is clear, compared to the cost of residential care. However, if caregivers are not adequately supported, savings may be soon offset by higher risk of caregiver morbidity and mortality produced by high burden and stress. The study has been registered on the website www.clinicaltrials.org (Trial Registration number: NCT01700556). Copyright � International Psychogeriatric Association 2015
Exploring the DNA2-PNA heterotriplex formation in targeting the Bcl-2 gene promoter: A structural insight by physico-chemical and microsecond-scale MD investigation
Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups’ research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches. Specifically, we identified a seven bases-long PNA sequence, complementary to the longer loop of the main G-quadruplex structure formed by the bcl2midG4 promoter sequence, capable of downregulating the expression of the antiapoptotic Bcl-2 protein and enhancing the anticancer activity of an oncolytic adenovirus. Here, we extended the length of the PNA probe with the aim of including the double-stranded Bcl-2 promoter among the targets of the PNA probe. Our investigation primarily focused on the structural aspects of the resulting DNA2-PNA heterotriplex that were determined by employing conventional and accelerated microsecond-scale molecular dynamics simulations and chemical-physical analysis. Additionally, we conducted preliminary biological experiments using cytotoxicity assays on human A549 and MDA-MB-436 adenocarcinoma cell lines, employing the oncolytic adenovirus delivery strategy
Preventing LVAD implantation by early short-term mechanical support and prolonged inodilator therapy
Standard perioperative management in gastrointestinal surgery
The outcome of patients who are scheduled for gastrointestinal surgery is influenced by various factors, the most important being the age and comorbidities of the patient, the complexity of the surgical procedure and the management of postoperative recovery. To improve patient outcome, close cooperation between surgeons and anaesthesiologists (joint risk assessment) is critical. This cooperation has become increasingly important because more and more patients are being referred to surgery at an advanced age and with multiple comorbidities and because surgical procedures and multimodal treatment modalities are becoming more and more complex. The aim of this review is to provide clinicians with practical recommendations for day-to-day decision-making from a joint surgical and anaesthesiological point of view. The discussion centres on gastrointestinal surgery specifically
- …
