1,469 research outputs found
Перша міжнародна науково-практична конференція «Комп'ютерне моделювання в хімії та технологіях»
Existence of radial stationary solutions for a system in combustion theory
In this paper, we construct radially symmetric solutions of a nonlinear
noncooperative elliptic system derived from a model for flame balls with
radiation losses. This model is based on a one step kinetic reaction and our
system is obtained by approximating the standard Arrehnius law by an ignition
nonlinearity, and by simplifying the term that models radiation. We prove the
existence of 2 solutions using degree theory
Flame front propagation IV: Random Noise and Pole-Dynamics in Unstable Front Propagation II
The current paper is a corrected version of our previous paper
arXiv:adap-org/9608001. Similarly to previous version we investigate the
problem of flame propagation. This problem is studied as an example of unstable
fronts that wrinkle on many scales. The analytic tool of pole expansion in the
complex plane is employed to address the interaction of the unstable growth
process with random initial conditions and perturbations. We argue that the
effect of random noise is immense and that it can never be neglected in
sufficiently large systems. We present simulations that lead to scaling laws
for the velocity and acceleration of the front as a function of the system size
and the level of noise, and analytic arguments that explain these results in
terms of the noisy pole dynamics.This version corrects some very critical
errors made in arXiv:adap-org/9608001 and makes more detailed description of
excess number of poles in system, number of poles that appear in the system in
unit of time, life time of pole. It allows us to understand more correctly
dependence of the system parameters on noise than in arXiv:adap-org/9608001Comment: 23 pages, 4 figures,revised, version accepted for publication in
journal "Combustion, Explosion and Shock Waves". arXiv admin note:
substantial text overlap with arXiv:nlin/0302021, arXiv:adap-org/9608001,
arXiv:nlin/030201
Extended Emission from Short Gamma-Ray Bursts Detected with SPI-ACS/INTEGRAL
The short duration (T90 < 2 s) gamma-ray bursts (GRBs) detected in the
SPI-ACS experiment onboard the INTEGRAL observatory are investigated. Averaged
light curves have been constructed for various groups of events, including
short GRBs and unidentified short events. Extended emission has been found in
the averaged light curves of both short GRBs and unidentified short events. It
is shown that the fraction of the short GRBs in the total number of SPI-ACS
GRBs can range from 30 to 45%, which is considerably larger than has been
thought previously.Comment: 27 pages, 10 figure
Analysis of symmetries in models of multi-strain infections
In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases
- …
