103,946 research outputs found

    Cutoff Effects on Energy-Momentum Tensor Correlators in Lattice Gauge Theory

    Full text link
    We investigate the discretization errors affecting correlators of the energy-momentum tensor TμνT_{\mu\nu} at finite temperature in SU(NcN_c) gauge theory with the Wilson action and two different discretizations of TμνT_{\mu\nu}. We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x0x_0 and spatial momentum p{\bf p}, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy d3xT00\int d^3x T_{00} has much larger discretization errors than the correlator of momentum d3xT0k\int d^3x T_{0k}. Secondly, the shear and diagonal stress correlators (T12T_{12} and TkkT_{kk}) require \Nt\geq 8 for the Tx0=1/2Tx_0={1/2} point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with \as/\at=2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p{\bf p} correlators.Comment: 16 pages, 5 figure

    Top Quark Production

    Full text link
    Recent measurements of top quark pair and single top production are presented. The results include inclusive cross sections as well as studies of differential distributions. Evidence for single top quark production in association with a W-boson in the final state is reported for the first time. Calculations in perturbative QCD up to approximate next-to-next-to-leading order show very good agreement with the data.Comment: Physics in Collision, Slovakia, 2012 PSNUM 0

    Density, short-range order and the quark-gluon plasma

    Full text link
    We study the thermal part of the energy density spatial correlator in the quark-gluon plasma. We describe its qualitative form at high temperatures. We then calculate it out to distances approx. 1.5/T in SU(3) gauge theory lattice simulations for the range of temperatures 0.9<= T/T_c<= 2.2. The vacuum-subtracted correlator exhibits non-monotonic behavior, and is almost conformal by 2T_c. Its broad maximum at r approx. 0.6/T suggests a dense medium with only weak short-range order, similar to a non-relativistic fluid near the liquid-gas phase transition, where eta/s is minimal.Comment: 4 pages, 4 figure

    Top Quark Properties

    Full text link
    Recent measurements of top-quark properties at the LHC and at the Tevatron are presented. The results include precision measurements of standard model parameters, such as the top-quark mass, the measurement of angular distributions as well as the search for anomalous couplings.Comment: Conference proceedings for Lepton Photon, Ljubljana, 17-22 August 2015, 12 pages, 10 figure

    QCD at non-zero temperature from the lattice

    Full text link
    I review the status of lattice QCD calculations at non-zero temperature. After summarizing what is known about the equilibrium properties of strongly interacting matter, I discuss in more detail recent results concerning the quark-mass dependence of the thermal phase transition and the status of calculations of non-equilibrium properties.Comment: 20 pages, 2 figures, proceedings of the Lattice 2015 conference in Kobe, Japa

    High-Precision Thermodynamics and Hagedorn Density of States

    Full text link
    We compute the entropy density of the confined phase of QCD without quarks on the lattice to very high accuracy. The results are compared to the entropy density of free glueballs, where we include all the known glueball states below the two-particle threshold. We find that an excellent, parameter-free description of the entropy density between 0.7Tc and Tc is obtained by extending the spectrum with the exponential spectrum of the closed bosonic string.Comment: 4 pages, 3 figure
    corecore