1,355 research outputs found

    Large-eddy simulation of large-scale structures in long channel flow

    Get PDF
    We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Re_τ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity

    Water quality map of Saginaw Bay from computer processing of LANDSAT-2 data

    Get PDF
    There are no author-identified significant results in this report

    New perspectives on the impulsive roughness-perturbation of a turbulent boundary layer

    Get PDF
    The zero-pressure-gradient turbulent boundary layer over a flat plate was perturbed by a short strip of two-dimensional roughness elements, and the downstream response of the flow field was interrogated by hot-wire anemometry and particle image velocimetry. Two internal layers, marking the two transitions between rough and smooth boundary conditions, are shown to represent the edges of a ‘stress bore’ in the flow field. New scalings, based on the mean velocity gradient and the third moment of the streamwise fluctuating velocity component, are used to identify this ‘stress bore’ as the region of influence of the roughness impulse. Spectral composite maps reveal the redistribution of spectral energy by the impulsive perturbation – in particular, the region of the near-wall peak was reached by use of a single hot wire in order to identify the significant changes to the near-wall cycle. In addition, analysis of the distribution of vortex cores shows a distinct structural change in the flow associated with the perturbation. A short spatially impulsive patch of roughness is shown to provide a vehicle for modifying a large portion of the downstream flow field in a controlled and persistent way

    Static pressure correction in high Reynolds number fully developed turbulent pipe flow

    Get PDF
    Measurements are reported of the error in wall static pressure reading due to the finite size of the pressure tapping. The experiments were performed in incompressible turbulent pipe flow over a wide range of Reynolds numbers, and the results indicate that the correction term (as a fraction of the wall stress) continues to increase as the hole Reynolds number d+=uτd/νd^+=u_\tau d/\nu increases, contrary to previous studies. For small holes relative to the pipe diameter the results follow a single curve, but for larger holes the data diverge from this universal behaviour at a point that depends on the ratio of the hole diameter to the pipe diameter

    A new friction factor relationship for fully developed pipe flow

    Get PDF
    The friction factor relationship for high-Reynolds-number fully developed turbulent pipe flow is investigated using two sets of data from the Princeton Superpipe in the range 31×10^3 ≤ ReD ≤ 35×10^6. The constants of Prandtl’s ‘universal’ friction factor relationship are shown to be accurate over only a limited Reynolds-number range and unsuitable for extrapolation to high Reynolds numbers. New constants, based on a logarithmic overlap in the mean velocity, are found to represent the high-Reynolds-number data to within 0.5%, and yield a value for the von Kármán constant that is consistent with the mean velocity profiles themselves. The use of a generalized logarithmic law in the mean velocity is also examined. A general friction factor relationship is proposed that predicts all the data to within 1.4% and agrees with the Blasius relationship for low Reynolds numbers to within 2.0%

    The effect of small-amplitude time-dependent changes to the surface morphology of a sphere

    Get PDF
    Typical approaches to manipulation of flow separation employ passive means or active techniques such as blowing and suction or plasma acceleration. Here it is demonstrated that the flow can be significantly altered by making small changes to the shape of the surface. A proof of concept experiment is performed using a very simple time-dependent perturbation to the surface of a sphere: a roughness element of 1% of the sphere diameter is moved azimuthally around a sphere surface upstream of the uncontrolled laminar separation point, with a rotational frequency as large as the vortex shedding frequency. A key finding is that the non-dimensional time to observe a large effect on the lateral force due to the perturbation produced in the sphere boundary layers as the roughness moves along the surface is ˆt =tU_(∞)/D ≈4. This slow development allows the moving element to produce a tripped boundary layer over an extended region. It is shown that a lateral force can be produced that is as large as the drag. In addition, simultaneous particle image velocimetry and force measurements reveal that a pair of counter-rotating helical vortices are produced in the wake, which have a significant effect on the forces and greatly increase the Reynolds stresses in the wake. The relatively large perturbation to the flow-field produced by the small surface disturbance permits the construction of a phase-averaged, three-dimensional (two-velocity component) wake structure from measurements in the streamwise/radial plane. The vortical structure arising due to the roughness element has implications for flow over a sphere with a nominally smooth surface or distributed roughness. In addition, it is shown that oscillating the roughness element, or shaping its trajectory, can produce a mean lateral force

    Debt Financing and Financial Flexibility Evidence from Pro-active Leverage Increases

    Get PDF
    Firms that intentionally increase leverage through substantial debt issuances do so primarily as a response to operating needs rather than a desire to make a large equity payout. Subsequent debt reductions are neither rapid, nor the result of pro-active attempts to rebalance the firm’s capital structure towards a long-run target. Instead, the evolution of the firm’s leverage ratio depends primarily on whether or not the firm produces a financial surplus. In fact, firms that generate subsequent deficits tend to cover these deficits predominantly with more debt even though they exhibit leverage ratios that are well above estimated target levels. While many of our findings are difficult to reconcile with traditional capital structure models, they are broadly consistent with a capital structure theory in which financial flexibility, in the form of unused debt capacity, plays an important role in capital structure choices.

    Production of a water quality map of Saginaw Bay by computer processing of LANDSAT-2 data

    Get PDF
    Surface truth and LANDSAT measurements collected July 31, 1975, for Saginaw Bay were used to demonstrate a technique for producing a color coded water quality map. On this map, color was used as a code to quantify five discrete ranges in the following water quality parameters: (1) temperature, (2) Secchi depth, (3) chloride, (4) conductivity, (5) total Kjeldahl nitrogen, (6) total phosphorous, (7)chlorophyll a, (8) total solids and (9) suspended solids. The LANDSAT and water quality relationship was established through the use of a set of linear regression equations where the water quality parameters are the dependent variables and LANDSAT measurements are the independent variables. Although the procedure is scene and surface truth dependent, it provides both a basis for extrapolating water quality parameters from point samples to unsampled areas and a synoptic view of water mass boundaries over the 3000 sq. km bay area made from one day's ship data that is superior, in many ways, to the traditional machine contoured maps made from three day's ship data

    Reynolds number dependence of streamwise velocity spectra in turbulent pipe flow

    Get PDF
    Spectra of the streamwise velocity component in fully developed turbulent pipe flow are presented for Reynolds numbers up to 5.7×10^6. Even at the highest Reynolds number, streamwise velocity spectra exhibit incomplete similarity only: while spectra collapse with both classical inner and outer scaling for limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as complete, and a region varying with the inverse of the streamwise wave number, k1, is not expected, and any apparent k1-1 range does not attract any special significance and does not involve a universal constant. Reasons for this are suggested

    Interactions within the turbulent boundary layer at high Reynolds number

    Get PDF
    Simultaneous streamwise velocity measurements across the vertical direction obtained in the atmospheric surface layer (Re_τ ≃ 5 × 10^5) under near thermally neutral conditions are used to outline and quantify interactions between the scales of turbulence, from the very-large-scale motions to the dissipative scales. Results from conditioned spectra, joint probability density functions and conditional averages show that the signature of very-large-scale oscillations can be found across the whole wall region and that these scales interact with the near-wall turbulence from the energy-containing eddies to the dissipative scales, most strongly in a layer close to the wall, z^+ ≲ 10^3. The scale separation achievable in the atmospheric surface layer appears to be a key difference from the low-Reynolds-number picture, in which structures attached to the wall are known to extend through the full wall-normal extent of the boundary layer. A phenomenological picture of very-large-scale motions coexisting and interacting with structures from the hairpin paradigm is provided here for the high-Reynolds-number case. In particular, it is inferred that the hairpin-packet conceptual model may not be exhaustively representative of the whole wall region, but only of a near-wall layer of z^+ = O(10^3), where scale interactions are mostly confined
    corecore