357 research outputs found
Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature
Relation between composition, microstructure and oxidation in iron aluminides
The relation between chemical composition, microstructure and oxidation properties has been investigated on various FeAl based alloys, the aim being to induce changes in the microstructure of the compound by selective oxidation of aluminium. Oxidation kinetics that was evaluated on bulk specimens showed that, due to fast diffusion in the alloys, no composition gradient is formed during the aluminium selective oxidation. Accordingly, significant aluminium depletion in the compound could be observed in the thinnest part of oxidised wedge-shape specimens. Another way to obtain samples of variable aluminium content was to prepare diffusion couples with one aluminide and pure iron as end members. These latter specimens have been characterised using electron microscopy and first results of oxidation experiments are presented
Disclination vortices in elastic media
The vortex-like solutions are studied in the framework of the gauge model of
disclinations in elastic continuum. A complete set of model equations with
disclination driven dislocations taken into account is considered. Within the
linear approximation an exact solution for a low-angle wedge disclination is
found to be independent from the coupling constants of the theory. As a result,
no additional dimensional characteristics (like the core radius of the defect)
are involved. The situation changes drastically for 2\pi vortices where two
characteristic lengths, l_\phi and l_W, become of importance. The asymptotical
behaviour of the solutions for both singular and nonsingular 2\pi vortices is
studied. Forces between pairs of vortices are calculated.Comment: 13 pages, published versio
Controlling a spillover pathway with the molecular cork effect
Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials. The spillover of hydrogen is notoriously hard to detect or control. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a ‘molecular cork’ effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage syste
- …