659 research outputs found

    Effect of Meteorological Conditions and Anthropogenic Factors on Air Concentrations of PM2.5 and PM10 Particulates on the Examples of the City of Kielce, Poland

    Get PDF
    The paper analyzes the influence of meteorological conditions (air temperature, wind speed, humidity, visibility) and anthropogenic factors (population in cities and in rural areas, road length, number of vehicles, emission of dusts and gases, coal consumption in industrial plants, number of air purification devices installed in industrial plants) on the concentration of PM2.5 and PM10 dusts in the air in the region of Kielce city in Poland. Spearman correlation coefficient was used to evaluate the relationship between the mentioned independent variables and air quality indicators. The calculated values of the correlation coefficient showed statistically significant relationships between air quality and the amount of installed air purification equipment in industrial plants. A statistically significant effect of the population in rural settlement units on the increase in air concentrations of PM2.5 and PM10 was also found, which proves the influence of the so-called low emission of pollutants on the air quality in the studied region. The analyses also revealed a statistically significant effect of road length on the decrease in PM2.5 and PM10 air content. This result indicates that a decrease in traffic intensity on particular road sections leads to an improvement in air quality. The analyses showed that despite the progressing anthropopression in the Kielce city region the air quality with respect to PM2.5 and PM10 content is improving. To verify the results obtained from statistical calculations, parametric models were also determined to predict PM2.5 and PM10 concentrations in the air, using the methods of Random Forests (RF), Boosted Trees (BT) and Support Vector Machines (SVM) for comparison purposes. The modelling results confirmed the conclusions that had been made based on previous statistical calculations

    A terahertz vibrational molecular clock with systematic uncertainty at the 101410^{-14} level

    Full text link
    Neutral quantum absorbers in optical lattices have emerged as a leading platform for achieving clocks with exquisite spectroscopic resolution. However, the studies of these clocks and their systematic shifts have so far been limited to atoms. Here, we extend this architecture to an ensemble of diatomic molecules and experimentally realize an accurate lattice clock based on pure molecular vibration. We evaluate the leading systematics, including the characterization of nonlinear trap-induced light shifts, achieving a total systematic uncertainty of 4.6×10144.6\times10^{-14}. The absolute frequency of the vibrational splitting is measured to be 31 825 183 207 592.8(5.1) Hz, enabling the dissociation energy of our molecule to be determined with record accuracy. Our results represent an important milestone in molecular spectroscopy and THz-frequency standards, and may be generalized to other neutral molecular species with applications for fundamental physics, including tests of molecular quantum electrodynamics and the search for new interactions.Comment: 17 pages, 8 figure

    Effect of three common SNPs in 5′-flanking region of LEP and ADIPOQ genes on their expression in Polish obese children and adolescents

    Get PDF
    Genes encoding adipokines are considered as candidates for human obesity. In this study we analyzed the expression of leptin (LEP) and adiponectin (ADIPOQ) genes in relation to common 5′-flanking or 5′UTR variants: -2548G>A (LEP), 19A>G (LEP) and -11377C>G (ADIPOQ) in Polish obese children and adolescents. Relative transcription levels in the subcutaneous adipose tissue (real time RT–PCR) and serum protein concentrations (RIA) were measured in 48 obese subjects with known genotypes at three polymorphic sites and in five non-obese controls. None of the studied polymorphisms altered significantly the expression. Significantly elevated relative transcription levels of the LEP gene (P < 0.05) and serum leptin concentrations (P < 0.01) were recorded in obese patients, when compared with the non-obese controls, but such differences were not found for the ADIPOQ gene. Interestingly, the leptin to adiponectin protein concentration ratio (L/A) was approximately sevenfold higher in obese children and adolescents when compared with the non-obese controls (P < 0.001). Taking into consideration the observed relationship between the genotypes and the gene expression level we suggest that these SNPs are not conclusive markers for predisposition to obesity in Polish children and adolescents. On the other hand, we confirmed that the leptin to adiponectin gene expression ratio (L/A) is an informative index characterizing obesity

    Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using

    Full text link
    Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 ± 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 µm) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 µm from their surface origin up to a depth of 500 µm. Inserting probes more than 49 µm from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85401/1/7_4_046011.pd

    Neuroactive steroids in depression and anxiety disorders: Clinical studies

    Get PDF
    Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3 alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3 alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3 alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3 alpha,5 alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds. Copyright (c) 2006 S. Karger AG, Basel

    Efecto de la preparación mediante maceración con enzima asistida comercial sobre el rendimiento, la calidad, y la bioactividad de aceite esencial de residuos de semillas de zanahoria (Daucus carota L.)

    Get PDF
    Eight enzyme preparations were screened with a view to maximizing the yield of carrot seed essential oil. Three of the eight enzyme preparations investigated, lipase from Mucor circinelloides, XPect® pectinase, and Esperase® protease, significantly influenced the amount of essential oil obtained, with Esperase® being the most effective. The Taguchi method was applied to optimize the processing conditions for the Esperase® protease. Under the optimum conditions, the essential oil yield increased by approximately 48%. The main constituent compounds in the oil are: carotol (OeA: 40.80%–OeB: 46.17%), daucol (OeA: 7.35%–OeB: 6.22%), sabinene (OeA: 5.12%–OeB: 6.13%), alpha-pinene (OeA: 4.24%–OeB: 5.11%) and geranyl acetate (OeA: 4.50%–OeB: 3.68%). As compared to the control sample, the essential oil obtained from enzyme-pretreated carrot seeds has the same biological activity against Bacillus subtilis and Candida sp., lower activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and higher activity against Aspergillus niger and Penicillium expansum.Ocho preparados enzimáticos fueron seleccionados con el fin de maximizar el rendimiento de aceites esenciales de semillas de zanahoria. Tres de los ocho preparados de las enzimas investigadas, lipasa de Mucor circinelloides, Xpect® pectinasa y Esperase® proteasa, influyeron de manera significativa sobre la cantidad de aceite esencial obtenido, siendo Esperase® el más eficaz. El método de Taguchi se aplicó para optimizar las condiciones del procesamiento para esta última. Bajo las condiciones óptimas, el rendimiento de los aceite esenciales aumentó aproximadamente un 48%. Los principales compuestos constituyentes del aceite son: carotol (OEA: 40.80%–OeB: 46,17%), ducol (OEA: 7,35%–OeB: 6,22%), sabineno (OEA: 5,12%–OeB: 6,13%), alfa-pineno (OEA: 4,24%– OeB: 5,11%) y acetato de geranilo (OEA: 4,50%–OeB: 3,68%). En comparación con la muestra control, el aceite esencial obtenido a partir de las semillas de zanahoria mediante enzima-pretratada tiene la misma actividad biológica frente a Bacillus subtilis y Candida sp., menor actividad frente a Staphylococcus aureus, Escherichia coli, y Pseudomonas aeruginosa, y una mayor actividad contra Aspergillus niger y Penicillium expansum
    corecore