1,657 research outputs found
High efficiency coherent optical memory with warm rubidium vapour
By harnessing aspects of quantum mechanics, communication and information
processing could be radically transformed. Promising forms of quantum
information technology include optical quantum cryptographic systems and
computing using photons for quantum logic operations. As with current
information processing systems, some form of memory will be required. Quantum
repeaters, which are required for long distance quantum key distribution,
require optical memory as do deterministic logic gates for optical quantum
computing. In this paper we present results from a coherent optical memory
based on warm rubidium vapour and show 87% efficient recall of light pulses,
the highest efficiency measured to date for any coherent optical memory. We
also show storage recall of up to 20 pulses from our system. These results show
that simple warm atomic vapour systems have clear potential as a platform for
quantum memory
An AC Stark Gradient Echo Memory in Cold Atoms
The burgeoning fields of quantum computing and quantum key distribution have
created a demand for a quantum memory. The gradient echo memory scheme is a
quantum memory candidate for light storage that can boast efficiencies
approaching unity, as well as the flexibility to work with either two or three
level atoms. The key to this scheme is the frequency gradient that is placed
across the memory. Currently the three level implementation uses a Zeeman
gradient and warm atoms. In this paper we model a new gradient creation
mechanism - the ac Stark effect - to provide an improvement in the flexibility
of gradient creation and field switching times. We propose this scheme in
concert with a move to cold atoms (~1 mK). These temperatures would increase
the storage times possible, and the small ensemble volumes would enable large
ac Stark shifts with reasonable laser power. We find that memory bandwidths on
the order of MHz can be produced with experimentally achievable laser powers
and trapping volumes, with high precision in gradient creation and switching
times on the order of nanoseconds possible. By looking at the different
decoherence mechanisms present in this system we determine that coherence times
on the order of 10s of milliseconds are possible, as are delay-bandwidth
products of approximately 50 and efficiencies over 90%
Storage and Manipulation of Light Using a Raman Gradient Echo Process
The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol
for storage and retrieval of optical quantum information. In this paper, we
review the properties of the -GEM method that stores information in
the ground states of three-level atomic ensembles via Raman coupling. The
scheme is versatile in that it can store and re-sequence multiple pulses of
light. To date, this scheme has been implemented using warm rubidium gas cells.
There are different phenomena that can influence the performance of these
atomic systems. We investigate the impact of atomic motion and four-wave mixing
and present experiments that show how parasitic four-wave mixing can be
mitigated. We also use the memory to demonstrate preservation of pulse shape
and the backward retrieval of pulses.Comment: 26 pages, 13 figure
Time- and frequency-domain polariton interference
We present experimental observations of interference between an atomic spin
coherence and an optical field in a {\Lambda}-type gradient echo memory. The
interference is mediated by a strong classical field that couples a weak probe
field to the atomic coherence through a resonant Raman transition. Interference
can be observed between a prepared spin coherence and another propagating
optical field, or between multiple {\Lambda} transitions driving a single spin
coherence. In principle, the interference in each scheme can yield a near unity
visibility.Comment: 11 pages, 5 figure
A Scalable, Self-Analyzing Digital Locking System for use on Quantum Optics Experiments
Digital control of optics experiments has many advantages over analog control
systems, specifically in terms of scalability, cost, flexibility, and the
integration of system information into one location. We present a digital
control system, freely available for download online, specifically designed for
quantum optics experiments that allows for automatic and sequential re-locking
of optical components. We show how the inbuilt locking analysis tools,
including a white-noise network analyzer, can be used to help optimize
individual locks, and verify the long term stability of the digital system.
Finally, we present an example of the benefits of digital locking for quantum
optics by applying the code to a specific experiment used to characterize
optical Schrodinger cat states.Comment: 7 pages, 5 figure
Photon number discrimination without a photon counter and its application to reconstructing non-Gaussian states
The non-linearity of a conditional photon-counting measurement can be used to
`de-Gaussify' a Gaussian state of light. Here we present and experimentally
demonstrate a technique for photon number resolution using only homodyne
detection. We then apply this technique to inform a conditional measurement;
unambiguously reconstructing the statistics of the non-Gaussian one and two
photon subtracted squeezed vacuum states. Although our photon number
measurement relies on ensemble averages and cannot be used to prepare
non-Gaussian states of light, its high efficiency, photon number resolving
capabilities, and compatibility with the telecommunications band make it
suitable for quantum information tasks relying on the outcomes of mean values.Comment: 4 pages, 3 figures. Theory section expanded in response to referee
comment
Gradient echo memory in an ultra-high optical depth cold atomic ensemble
Quantum memories are an integral component of quantum repeaters - devices
that will allow the extension of quantum key distribution to communication
ranges beyond that permissible by passive transmission. A quantum memory for
this application needs to be highly efficient and have coherence times
approaching a millisecond. Here we report on work towards this goal, with the
development of a Rb magneto-optical trap with a peak optical depth of
1000 for the D2 transition using spatial and temporal
dark spots. With this purpose-built cold atomic ensemble to implement the
gradient echo memory (GEM) scheme. Our data shows a memory efficiency of % and coherence times up to 195 s, which is a factor of four greater
than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure
Spatial mode storage in a gradient echo memory
Three-level atomic gradient echo memory (lambda-GEM) is a proposed candidate
for efficient quantum storage and for linear optical quantum computation with
time-bin multiplexing. In this paper we investigate the spatial multimode
properties of a lambda-GEM system. Using a high-speed triggered CCD, we
demonstrate the storage of complex spatial modes and images. We also present an
in-principle demonstration of spatial multiplexing by showing selective recall
of spatial elements of a stored spin wave. Using our measurements, we consider
the effect of diffusion within the atomic vapour and investigate its role in
spatial decoherence. Our measurements allow us to quantify the spatial
distortion due to both diffusion and inhomogeneous control field scattering and
compare these to theoretical models.Comment: 11 pages, 9 figure
Precision spectral manipulation of optical pulses using a coherent photon echo memory
Photon echo schemes are excellent candidates for high efficiency coherent
optical memory. They are capable of high-bandwidth multi-pulse storage, pulse
resequencing and have been shown theoretically to be compatible with quantum
information applications. One particular photon echo scheme is the gradient
echo memory (GEM). In this system, an atomic frequency gradient is induced in
the direction of light propagation leading to a Fourier decomposition of the
optical spectrum along the length of the storage medium. This Fourier encoding
allows precision spectral manipulation of the stored light. In this letter, we
show frequency shifting, spectral compression, spectral splitting, and fine
dispersion control of optical pulses using GEM
Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth
We report on the delay of optical pulses using electromagnetically induced
transparency in an ensemble of cold atoms with an optical depth exceeding 500.
To identify the regimes in which four-wave mixing impacts on EIT behaviour, we
conduct the experiment in both rubidium 85 and rubidium 87. Comparison with
theory shows excellent agreement in both isotopes. In rubidium 87, negligible
four-wave mixing was observed and we obtained one pulse-width of delay with 50%
efficiency. In rubidium 85, four-wave-mixing contributes to the output. In this
regime we achieve a delay-bandwidth product of 3.7 at 50% efficiency, allowing
temporally multimode delay, which we demonstrate by compressing two pulses into
the memory medium.Comment: 8 pages, 6 figure
- …