6,929 research outputs found

    Antiferromagnetic fluctuations in the normal state of LiFeAs

    Get PDF
    We present a detailed study of 75As NMR Knight shift and spin-lattice relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs. Our analysis of the Korringa relation suggests that LiFeAs exhibits strong antiferromagnetic fluctuations, if transferred hyperfine coupling is a dominant interaction between 75As nuclei and Fe electronic spins, whereas for an on-site hyperfine coupling scenario, these are weaker, but still present to account for our experimental observations. Density-functional calculations of electric field gradient correctly reproduce the experimental values for both 75As and 7Li sites.Comment: 5 pages, 3 figures, thoroughly revised version with refined experimental data, accepted for publication as a Rapid Communication in Physical Review B

    Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4

    Full text link
    We present a comparative study of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4 (Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state at a lower critical temperature Tc_c=13.6K than in Cu-2252(Cl) (Tc_c=18K) can be well understood in terms of the modified interaction paths. We identify the relevant structural changes between the two systems and discuss the hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden 200

    Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7

    Full text link
    We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band structure calculations, we solve the room-temperature structure of this compound [alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889 A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub), space group Pbam] are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 K and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the gamma --> beta transformation, while a cooperative tilting of the NbO6 octahedra in the alpha-phase further eliminates the disorder of the Cu atoms. The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding the magnetic properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif files) include

    The two-dimensional frustrated Heisenberg model on the orthorhombic lattice

    Full text link
    We discuss new high-field magnetization data recently obtained by Tsirlin et al. for layered vanadium phosphates in the framework of the square-lattice model. Our predictions for the saturation fields compare exceptionally well to the experimental findings, and the strong bending of the curves below saturation agrees very well with the experimental field dependence. Furthermore we discuss the remarkably good agreement of the frustrated Heisenberg model on the square lattice in spite of the fact that the compounds described with this model actually have a lower crystallographic symmetry. We present results from our calculations on the thermodynamics of the model on the orthorhombic (i.e., rectangular) lattice, in particular the temperature dependence of the magnetic susceptibility. This analysis also sheds light on the discussion of magnetic frustration and anisotropy of a class of iron pnictide parent compounds, where several alternative suggestions for the magnetic exchange models were proposed.Comment: 4 pages, 3 figures, accepted for publication in Journal of Physics: Conference Serie

    Determining the Quark Mixing Matrix From CP-Violating Asymmetries

    Full text link
    If the Standard Model explanation of CP violation is correct, then measurements of CP-violating asymmetries in BB meson decays can in principle determine the entire quark mixing matrix.Comment: 8 pages (plain TeX), 1 figure (postscript file appended), DAPNIA/SPP 94-06, NSF-PT-94-2, UdeM-LPN-TH-94-18

    Simulations of Astrophysical Fluid Instabilities

    Get PDF
    We present direct numerical simulations of mixing at Rayleigh-Taylor unstable interfaces performed with the FLASH code, developed at the ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We present initial results of single-mode studies in two and three dimensions. Our results indicate that three-dimensional instabilities grow significantly faster than two-dimensional instabilities and that grid resolution can have a significant effect on instability growth rates. We also find that unphysical diffusive mixing occurs at the fluid interface, particularly in poorly resolved simulations.Comment: 3 pages, 1 figure. To appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysic

    Atomic Parity Violation and Precision Electroweak Physics - An Updated Analysis

    Get PDF
    A new analysis of parity violation in atomic cesium has led to the improved value of the weak charge, QW(Cs)=72.06±0.46Q_W({\rm Cs}) = -72.06 \pm 0.46. The implications of this result for constraining the Peskin-Takeuchi parameters S and T and for guiding searches for new Z bosons are discussed.Comment: 8 pages, LaTeX, 3 figures, Submitted to Physical Review D. Updated experimental inputs and references; clarification of notatio

    Specific heat of Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2 single crystals: unconventional s±_\pm multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings

    Full text link
    We report a low-temperature specific heat study of high-quality single crystals of the heavily hole doped superconductor Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2. This compound exhibits bulk superconductivity with a transition temperature Tc34T_c \approx 34\,K, which is evident from the magnetization, transport, and specific heat measurements. The zero field data manifests a significant electronic specific heat in the normal state with a Sommerfeld coefficient γ53\gamma \approx 53 mJ/mol K2^{2}. Using a multi-band Eliashberg analysis, we demonstrate that the dependence of the zero field specific heat in the superconducting state is well described by a three-band model with an unconventional s±_\pm pairing symmetry and gap magnitudes Δi\Delta_i of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling,which contributes significantly to the relatively high value of TcT_c. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-TcT_c iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.Comment: 8 Figures, Submitted to PR

    Reconstruction methods — P‾ANDA focussing-light guide disc DIRC

    Get PDF
    The Focussing-Lightguide Disc DIRC will provide crucial Particle Identification (PID) information for the P‾ANDA experiment at FAIR, GSI. This detector presents a challenging environment for reconstruction due to the complexity of the expected hit patterns and the operating conditions of the P‾ANDA experiment. A discussion of possible methods to reconstruct PID from this detector is given here. Reconstruction software is currently under development
    corecore