2,375 research outputs found
Change Mining in Adaptive Process Management Systems
The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms
Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation
The persistence probability, , of a cluster to remain unaggregated is
studied in cluster-cluster aggregation, when the diffusion coefficient of a
cluster depends on its size as . In the mean-field the
problem maps to the survival of three annihilating random walkers with
time-dependent noise correlations. For the motion of persistent
clusters becomes asymptotically irrelevant and the mean-field theory provides a
correct description. For the spatial fluctuations remain relevant
and the persistence probability is overestimated by the random walk theory. The
decay of persistence determines the small size tail of the cluster size
distribution. For the distribution is flat and, surprisingly,
independent of .Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
Charge-density-wave order parameter of the Falicov-Kimball model in infinite dimensions
In the large-U limit, the Falicov-Kimball model maps onto an effective Ising
model, with an order parameter described by a BCS-like mean-field theory in
infinite dimensions. In the small-U limit, van Dongen and Vollhardt showed that
the order parameter assumes a strange non-BCS-like shape with a sharp reduction
near T approx T_c/2. Here we numerically investigate the crossover between
these two regimes and qualitatively determine the order parameter for a variety
of different values of U. We find the overall behavior of the order parameter
as a function of temperature to be quite anomalous.Comment: (5 pages, 3 figures, typeset with ReVTeX4
Investigation of the Spin-Peierls transition in CuGeO_3 by Raman scattering
Raman experiments on the spin-Peierls compound CuGeO and the substituted
(Cu,Zn)GeO and Cu(Ge,Ga)O compounds were
performed in order to investigate the response of specific magnetic excitations
of the one-dimensional spin-1/2 chain to spin anisotropies and
substitution-induced disorder. In pure CuGeO, in addition to normal phonon
scattering which is not affected at all by the spin-Peierls transition, four
types of magnetic scattering features were observed. Below T=14 K a
singlet-triplet excitation at 30 cm, two-magnon scattering from 30 to
227 cm and folded phonon modes at 369 and 819 cm were identified.
They were assigned by their temperature dependence and lineshape. For
temperatures between the spin-Peierls transition T and approximately 100
K a broad intensity maximum centered at 300 cm is observed.Comment: 7 pages, LaTex2e, including 3 figures (eps) to be published in
Physica B (1996
Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels
The existence of self-similar solutions with fat tails for Smoluchowski's
coagulation equation has so far only been established for the solvable and the
diagonal kernel. In this paper we prove the existence of such self-similar
solutions for continuous kernels that are homogeneous of degree and satisfy . More precisely,
for any we establish the existence of a continuous weak
self-similar profile with decay as
Asymptotics of self-similar solutions to coagulation equations with product kernel
We consider mass-conserving self-similar solutions for Smoluchowski's
coagulation equation with kernel with
. It is known that such self-similar solutions
satisfy that is bounded above and below as . In
this paper we describe in detail via formal asymptotics the qualitative
behavior of a suitably rescaled function in the limit . It turns out that as . As becomes larger
develops peaks of height that are separated by large regions
where is small. Finally, converges to zero exponentially fast as . Our analysis is based on different approximations of a nonlocal
operator, that reduces the original equation in certain regimes to a system of
ODE
Supporting flexible processes through recommendations based on history
In today's fast changing business environment exible information systems are required to allow companies to rapidly adjust their business processes to changes in the environment. However, increasing exibility in large information system usually leads to less guidance for its users and consequently requires more experienced users. In order to allow for exible systems with a high degree of guidance, intelligent user assistance is required. In this paper we propose a recommendation service, which, when used in combination with exible information systems, can guide end users during process execution by giving recommendations on possible next steps. Recommendations are generated based on similar past process executions by considering the specific optimization goals. This paper also describes an implementation of the proposed recommendation service in the context of ProM and the declarative work ow management system DECLARE
Nontrivial Polydispersity Exponents in Aggregation Models
We consider the scaling solutions of Smoluchowski's equation of irreversible
aggregation, for a non gelling collision kernel. The scaling mass distribution
f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now,
only be computed by numerical simulations. We develop here new general methods
to obtain exact bounds and good approximations of . For the specific
kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles
moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R
is the particle radius), perturbative and nonperturbative expansions are
derived.
For a general kernel, we find exact inequalities for tau and develop a
variational approximation which is used to carry out the first systematic study
of tau(d,D) for KdD. The agreement is excellent both with the expansions we
derived and with existing numerical values. Finally, we discuss a possible
application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor
corrections. Notations improved, as published in Phys. Rev. E 55, 546
Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
The simplest statistical-mechanical model of crystalline formation (or alloy
formation) that includes electronic degrees of freedom is solved exactly in the
limit of large spatial dimensions and infinite interaction strength. The
solutions contain both second-order phase transitions and first-order phase
transitions (that involve phase-separation or segregation) which are likely to
illustrate the basic physics behind the static charge-stripe ordering in
cuprate systems. In addition, we find the spinodal-decomposition temperature
satisfies an approximate scaling law.Comment: 19 pages and 10 figure
A Survey of Numerical Solutions to the Coagulation Equation
We present the results of a systematic survey of numerical solutions to the
coagulation equation for a rate coefficient of the form A_ij \propto (i^mu j^nu
+ i^nu j^mu) and monodisperse initial conditions. The results confirm that
there are three classes of rate coefficients with qualitatively different
solutions. For nu \leq 1 and lambda = mu + nu \leq 1, the numerical solution
evolves in an orderly fashion and tends toward a self-similar solution at large
time t. The properties of the numerical solution in the scaling limit agree
with the analytic predictions of van Dongen and Ernst. In particular, for the
subset with mu > 0 and lambda < 1, we disagree with Krivitsky and find that the
scaling function approaches the analytically predicted power-law behavior at
small mass, but in a damped oscillatory fashion that was not known previously.
For nu \leq 1 and lambda > 1, the numerical solution tends toward a
self-similar solution as t approaches a finite time t_0. The mass spectrum n_k
develops at t_0 a power-law tail n_k \propto k^{-tau} at large mass that
violates mass conservation, and runaway growth/gelation is expected to start at
t_crit = t_0 in the limit the initial number of particles n_0 -> \infty. The
exponent tau is in general less than the analytic prediction (lambda + 3)/2,
and t_0 = K/[(lambda - 1) n_0 A_11] with K = 1--2 if lambda > 1.1. For nu > 1,
the behaviors of the numerical solution are similar to those found in a
previous paper by us. They strongly suggest that there are no self-consistent
solutions at any time and that runaway growth is instantaneous in the limit n_0
-> \infty. They also indicate that the time t_crit for the onset of runaway
growth decreases slowly toward zero with increasing n_0.Comment: 41 pages, including 14 figures; accepted for publication in J. Phys.
- âŠ