111 research outputs found

    Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound

    Get PDF
    We study asymptotic lower and upper bounds for the sizes of constant dimension codes with respect to the subspace or injection distance, which is used in random linear network coding. In this context we review known upper bounds and show relations between them. A slightly improved version of the so-called linkage construction is presented which is e.g. used to construct constant dimension codes with subspace distance d=4d=4, dimension k=3k=3 of the codewords for all field sizes qq, and sufficiently large dimensions vv of the ambient space, that exceed the MRD bound, for codes containing a lifted MRD code, by Etzion and Silberstein.Comment: 30 pages, 3 table

    Aqueductal developmental venous anomaly as an unusual cause of congenital hydrocephalus: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Aqueductal stenosis may be caused by a number of etiologies including congenital stenosis, tumor, inflammation, and, very rarely, vascular malformation. However, aqueductal stenosis caused by a developmental venous anomaly presenting as congenital hydrocephalus is even more rare, and, to the best of our knowledge, has not yet been reported in the literature. In this study, we review the literature and report the first case of congenital hydrocephalus associated with aqueductal stenosis from a developmental venous anomaly.</p> <p>Case presentation</p> <p>The patient is a three-day-old, African-American baby girl with a prenatal diagnosis of hydrocephalus. She presented with a full fontanelle, splayed sutures, and macrocephaly. Postnatal magnetic resonance imaging showed triventricular hydrocephalus, suggesting aqueductal stenosis. Examination of the T1-weighted sagittal magnetic resonance imaging enhanced with gadolinium revealed a developmental venous anomaly passing through the orifice of the aqueduct. We treated the patient with a ventriculoperitoneal shunt.</p> <p>Conclusions</p> <p>Ten cases of aqueductal stenosis due to venous lesions have been reported and, although these venous angiomas and developmental venous anomalies are usually considered congenital lesions, all 10 cases became symptomatic as older children and adults. Our case is the first in which aqueductal stenosis caused by a developmental venous anomaly presents as congenital hydrocephalus. We hope adding to the literature will improve understanding of this very uncommon cause of hydrocephalus and, therefore, will aid in treatment.</p

    Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor

    Get PDF
    Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISICACID3 (ABI3) and its Zeamays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers

    Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis

    Get PDF
    Abstract Background In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.</p

    Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA

    Get PDF
    Human sperm DNA damage may have adverse effects on reproductive outcome. Infertile men possess substantially more spermatozoa with damaged DNA compared to fertile donors. Although the extent of this abnormality is closely related to sperm function, the underlying etiology of ensuing male infertility is still largely controversial. Both intra-testicular and post-testicular events have been postulated and different mechanisms have been proposed to explain the presence of damaged DNA in human spermatozoa. Three among them, i.e. abnormal chromatin packaging, oxidative stress and apoptosis, are the most studied and discussed in the present review. Furthermore, results from numerous investigations are presented, including our own findings on these pathological conditions, as well as the techniques applied for their evaluation. The crucial points of each methodology on the successful detection of DNA damage and their validity on the appraisal of infertile patients are also discussed. Along with the conventional parameters examined in the standard semen analysis, evaluation of damaged sperm DNA seems to complement the investigation of factors affecting male fertility and may prove an efficient diagnostic tool in the prediction of pregnancy outcome
    • 

    corecore