114 research outputs found
Charge symmetry violation in the parton distributions of the nucleon
We point out that charge symmetry violation in both the valence and sea quark
distributions of the nucleon has a non-perturbative source. We calculate this
non-perturbative charge symmetry violation using the meson cloud model, which
has earlier been successfully applied to both the study of SU(2) flavour
asymmetry in the nucleon sea and quark-antiquark asymmetry in the nucleon. We
find that the charge symmetry violation in the valence quark distribution is
well below 1%, which is consistent with most low energy tests but significantly
smaller than the quark model prediction about 5%-10%. Our prediction for the
charge symmetry violation in the sea quark distribution is also much smaller
than the quark model calculation.Comment: RevTex, 26 pages, 6 PostScript figure
Wave functions in the neighborhood of a toroidal surface; hard vs. soft constraint
The curvature potential arising from confining a particle initially in
three-dimensional space onto a curved surface is normally derived in the hard
constraint limit, with the degree of freedom normal to the
surface. In this work the hard constraint is relaxed, and eigenvalues and wave
functions are numerically determined for a particle confined to a thin layer in
the neighborhood of a toroidal surface. The hard constraint and finite layer
(or soft constraint) quantities are comparable, but both differ markedly from
those of the corresponding two dimensional system, indicating that the
curvature potential continues to influence the dynamics when the particle is
confined to a finite layer. This effect is potentially of consequence to the
modelling of curved nanostructures.Comment: 4 pages, no fig
Towards a Relativistic Description of Exotic Meson Decays
This work analyses hadronic decays of exotic mesons, with a focus on the
lightest one, the , in a fully relativistic formalism,
and makes comparisons with non-relativistic results. We also discuss Coulomb
gauge decays of normal mesons that proceed through their hybrid components. The
relativistic spin wave functions of mesons and hybrids are constructed based on
unitary representations of the Lorentz group. The radial wave functions are
obtained from phenomenological considerations of the mass operator. Fully
relativistic results (with Wigner rotations) differ significantly from
non-relativistic ones. We also find that the decay channels are favored, in agreement with results obtained using
other models.Comment: 14 pages, 7 figure
Exponential splitting of bound states in a waveguide with a pair of distant windows
We consider Laplacian in a straight planar strip with Dirichlet boundary
which has two Neumann ``windows'' of the same length the centers of which are
apart, and study the asymptotic behaviour of the discrete spectrum as
. It is shown that there are pairs of eigenvalues around each
isolated eigenvalue of a single-window strip and their distances vanish
exponentially in the limit . We derive an asymptotic expansion also
in the case where a single window gives rise to a threshold resonance which the
presence of the other window turns into a single isolated eigenvalue
Developing a Protocol for Ensemble and Vibrational Probe-Containing Molecular Dynamics Simulations of the Nipah Ntail-XD Complex
International audienceno abstrac
Dynamical approach to chains of scatterers
Linear chains of quantum scatterers are studied in the process of
lengthening, which is treated and analysed as a discrete dynamical system
defined over the manifold of scattering matrices. Elementary properties of such
dynamics relate the transport through the chain to the spectral properties of
individual scatterers. For a single-scattering channel case some new light is
shed on known transport properties of disordered and noisy chains, whereas
translationally invariant case can be studied analytically in terms of a simple
deterministic dynamical map. The many-channel case was studied numerically by
examining the statistical properties of scatterers that correspond to a certain
type of transport of the chain i.e. ballistic or (partially) localised.Comment: 16 pages, 7 figure
Bound States in Mildly Curved Layers
It has been shown recently that a nonrelativistic quantum particle
constrained to a hard-wall layer of constant width built over a geodesically
complete simply connected noncompact curved surface can have bound states
provided the surface is not a plane. In this paper we study the weak-coupling
asymptotics of these bound states, i.e. the situation when the surface is a
mildly curved plane. Under suitable assumptions about regularity and decay of
surface curvatures we derive the leading order in the ground-state eigenvalue
expansion. The argument is based on Birman-Schwinger analysis of Schroedinger
operators in a planar hard-wall layer.Comment: LaTeX 2e, 23 page
Spectrum of the Schr\"odinger operator in a perturbed periodically twisted tube
We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight
twisted tube of a non-circular cross section. It is shown that a local
perturbation which consists of "slowing down" the twisting in the mean gives
rise to a non-empty discrete spectrum.Comment: LaTeX2e, 10 page
Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance
The processes involving low energy and interactions (where
or ) are studied in the framework of heavy baryon chiral
perturbation theory with the (1405) resonance appearing as an
independent field.
The leading and next-to-leading terms in the chiral expansion are taken into
account. We show that an approach which explicitly includes the (1405)
resonance as an elementary quantum field gives reasonable descriptions of both
the threshold branching ratios and the energy dependence of total cross
sections.Comment: 16 pages, 6 figure
Explicit Model Realizing Parton-Hadron Duality
We present a model that realizes both resonance-Regge (Veneziano) and
parton-hadron (Bloom-Gilman) duality. We first review the features of the
Veneziano model and we discuss how parton-hadron duality appears in the
Bloom-Gilman model. Then we review limitations of the Veneziano model, namely
that the zero-width resonances in the Veneziano model violate unitarity and
Mandelstam analyticity. We discuss how such problems are alleviated in models
that construct dual amplitudes with Mandelstam analyticity (so-called DAMA
models). We then introduce a modified DAMA model, and we discuss its
properties. We present a pedagogical model for dual amplitudes and we construct
the nucleon structure function F2(x,Q2). We explicitly show that the resulting
structure function realizes both Veneziano and Bloom-Gilman duality.Comment: 11 pages, 8 figure
- âŠ