281 research outputs found
Progressive damage in stitched composites: Static tensile tests and tension-tension fatigue
The paper describes progressive damage in static tensile tests and tension-tension fatigue in structurally stitched carbon/epoxy NCF composites, in comparison with their non-stitched counterparts. Analogies between damage development in quasi-static tension and tension-tension fatigue are analyzed and links between the damage initiation thresholds in quasi-static tests and fatigue life are established
Mixing of fermion fields of opposite parities and baryon resonances
We consider a loop mixing of two fermion fields of opposite parities whereas
the parity is conserved in a Lagrangian. Such kind of mixing is specific for
fermions and has no analogy in boson case. Possible applications of this effect
may be related with physics of baryon resonances. The obtained matrix
propagator defines a pair of unitary partial amplitudes which describe the
production of resonances of spin and different parity or
. The use of our amplitudes for joint description of
partial waves and shows that the discussed effect is clearly
seen in these partial waves as the specific form of interference between
resonance and background. Another interesting application of this effect may be
a pair of partial waves and where the picture is more
complicated due to presence of several resonance states.Comment: 22 pages, 6 figures, more detailed comparison with \pi N PW
Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier
Shallow GaAs/InGaAs/GaAs quantum well structures with and without a three
monolayer thick AlAs central barrier have been investigated for different well
widths and Si doping levels. The transport parameters are determined by
resistivity measurements in the temperature range 4-300 K and magnetotransport
in magnetic fields up to 12 T. The (subband) carrier concentrations and
mobilities are extracted from the Hall data and Shubnikov-de Haas oscillations.
We find that the transport parameters are strongly affected by the insertion of
the AlAs central barrier. Photoluminescence spectra, measured at 77 K, show an
increase of the transition energies upon insertion of the barrier. The
transport and optical data are analyzed with help of self-consistent
calculations of the subband structure and envelope wave functions. Insertion of
the AlAs central barrier changes the spatial distribution of the electron wave
functions and leads to the formation of hybrid states, i.e. states which extend
over the InGaAs and the delta-doped layer quantum wells.Comment: 14 pages, pdf fil
Spin half fermions with mass dimension one: theory, phenomenology, and dark matter
We provide the first details on the unexpected theoretical discovery of a
spin-one-half matter field with mass dimension one. It is based upon a complete
set of dual-helicity eigenspinors of the charge conjugation operator. Due to
its unusual properties with respect to charge conjugation and parity, it
belongs to a non-standard Wigner class. Consequently, the theory exhibits
non-locality with (CPT)^2 = - I. We briefly discuss its relevance to the
cosmological `horizon problem'. Because the introduced fermionic field is
endowed with mass dimension one, it can carry a quartic self-interaction. Its
dominant interaction with known forms of matter is via Higgs, and with gravity.
This aspect leads us to contemplate the new fermion as a prime dark matter
candidate. Taking this suggestion seriously we study a supernova-like explosion
of a galactic-mass dark matter cloud to set limits on the mass of the new
particle and present a calculation on relic abundance to constrain the relevant
cross-section. The analysis favours light mass (roughly 20 MeV) and relevant
cross-section of about 2 pb. Similarities and differences with the WIMP and
mirror matter proposals for dark matter are enumerated. In a critique of the
theory we bare a hint on non-commutative aspects of spacetime, and
energy-momentum space.Comment: 78 pages [Changes: referee-suggested improvements, additional
important references, and better readability
Measurement and analysis of needle penetration forces in industrial high-speed sewing machine
The industrial manufacturing of sewn products has always been one of the critical processes of the textile chain concerning quality assurance. Assuring the appropriate set-up and operation of all the machines, and thus the final seam quality, is a very complex task. Traditionally, this task is accomplished through empirical methods, with the machine setting and quality control relying on the skills of operators and technicians.
This work presents an approach to a more knowledge-based and integrated process planning and control. A system was developed to measure and analyze the most important mechanical effects occurring during high-speed sewing. The paper will focus mainly on the measurement and evaluation of needle penetration and withdrawal force.
After an overview of the system, the most important experimental results obtained in a series of experiments will be described
Recommended from our members
Numerical Modeling of Mixing and Venting from Explosions in Underground Chambers
2D and 3D numerical simulations were performed to study the dynamic interaction of explosion products in an underground concrete chamber with ambient air, barrels of water, and the surrounding walls and structure. The simulations were carried out with GEODYN, a multi-material, Godunov-based Eulerian code that employs adaptive mesh refinement and runs efficiently on massively parallel computer platforms. Tabular equations of state were used to model materials under shock loading. An appropriate constitutive model was used to describe the concrete. Interfaces between materials were either tracked with a volume-of-fluid method that used high-order reconstruction to specify the interface location and orientation, or a capturing approach was employed with the assumption of local thermal and mechanical equilibrium. A major focus of the study was to estimate the extent of water heating that could be obtained prior to venting of the chamber. Parameters investigated included the chamber layout, energy density in the chamber and the yield-to-water mass ratio. Turbulent mixing was found to be the dominant heat transfer mechanism for heating the water
Recommended from our members
Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target
We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration
Recommended from our members
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized to remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented
Recommended from our members
Simulation of penetration into porous geologic media
We present a computational study on the penetration of steel projectiles into porous geologic materials. The purpose of the study is to extend the range of applicability of a recently developed constitutive model to simulations involving projectile penetration into geologic media. The constitutive model is non-linear, thermodynamically consistent, and properly invariant under superposed rigid body motions. The equations are valid for large deformations and they are hyperelastic in the sense that the stress tensor is related to a derivative of the Helmholtz free energy. The model uses the mathematical structure of plasticity theory to capture the basic features of the mechanical response of geological materials including the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. The new constitutive model has been successfully used to simulate static laboratory tests under a wide range of triaxial loading conditions, and dynamic spherical wave propagation tests in both dry and saturated geologic media
- …
