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Abstract 

We present a computational study on the penetration of steel projectiles into porous 

geologic materials. The purpose of the study is to extend the range of applicability of a 

recently developed constitutive model to simulations involving projectile penetration into 

geologic media. The constitutive model is non-linear, thermodynamically consistent, and 

properly invariant under superposed rigid body motions. The equations are valid for large 

deformations and they are hyperelastic in the sense that the stress tensor is related to a 

derivative of the Helmholtz free energy. The model uses the mathematical structure of 

plasticity theory to capture the basic features of the mechanical response of geological 

materials including the effects of bulking, yielding, damage, porous compaction and 

loading rate on the material response. The new constitutive model has been successfully 

used to simulate static laboratory tests under a wide range of triaxial loading conditions, 

and dynamic spherical wave propagation tests in both dry and saturated geologic media. 

Keywords: penetration, constitutive modeling, numerical simulations, porous 

compaction, dilatancy, poroelasticity, spherical cavity expansion. 

 



1. Introduction 

   In this paper we demonstrate that the same model that has successfully been used to 

represent static data, as well as small scale and large scale wave propagation data can be 

used to simulate penetration into geologic media. A series of simulations are performed 

under a range of impact conditions, and the results are compared to experimental data up 

to impact velocities of about 1 km/s.  

 

2. Model for porous geologic media 

2.1 Basic equations 

The thermomechanical structure of the model for partially saturated geological is based 

on the developments in [1].  Within this context, an elemental volume dv of the porous 

material in the present configuration is expresses as the sum of solid volume dvs and pore 

volume dvp, such that 

 dv = dvs + dvp  ,  dV = dVs + dVp  , (1) 

where {dV, dVs, dVp} are the values of {dv, dvs, dvp}, respectively, in a fixed reference 

configuration.  The porosity φ and its reference value Φ are defined by  

φ = 
dvp
dv   ,  Φ = 

dVp
dV   . (2) 

The total dilatation, J, and the average dilatation of the solid, Js, are defined by 

 J = 
dv
dV  ,  Js = 

dvs
dVs

 = [1–φ
1–Φ] J  , (3) 



The elastic response of the solid is characterized by the dilatation, Js, in (3) where the 

total dilatation, J, is determined by the evolution equation 

 
•
J
J = D • I, (4) 

where D is the symmetric part of the velocity gradient L, and the superposed dot denotes 

material time differentiation. A symmetric unimodular tensor Be'  is used as a measure of 

pure elastic distortion in the evolution equation 

 
•
Be'  = LBe'  + Be'L

T – 
2
3 (D • I) Be'  – Ap ,   Ap = Γp [Be'  – { 3

Be'
–1 • I

}I] ,  (5) 

where the tensor, Ap, characterizes the direction and magnitude of inelasticity for 

distortional response and Γp requires an additional constitutive equation, (see [1] for 

example.) 

 We introduce poroelasticity by expressing the porosity as a function of J and a 

history dependent variable φu   (similar to [1]) as 
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where φu is the unloaded porosity,  x is auxiliary variable and {a,b} are material 

constants. The unloaded porosity φu describes the porosity that would exist if the material 

was unloaded from the current state.  

2.2 Yield Surface 

Geologic media are frictional materials and as such, their yield behavior is pressure 

dependent. The current model introduces two pressure dependent surfaces that govern the 



material response during yielding: the initial yield surface (onset of yield), Y0(p), and the 

ultimate strength surface, Yf(p), ( see Figure 1). The yield strength corresponding to a 

generalized triaxial compression state, YTXC(p), is derived from Y0(p) and  Yf(p) such 

that 

 YTXC = δh Yf(p) + (1–δh) Y0(p). (7) 

The equivalent plastic strain εp, determined by integrating the evolution equation 

 
•
εp = [2

3 Dp • Dp]
1/2

  ,    Dp = 
1
2  Γp Ap ≈ 

1
2  Γp Be''  ,  (8) 

is used to define a hardening parameter δh

 δh = 
εp

εhard + εp
  , (9) 

where εhard  is a constant. The initial yield surface is expressed in the form 

 Y0(p) = C Yf(p) [
Pc – max(P0,p)

Pc – P0
]

r
, 0 < C ≤ 1, r > 1, (10) 

where {C, r} are constants and {P0, Pc} are functions of compaction to be specified. 
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Fig. 1 Yield surface in Y-P plane. The cap separating elastic and plastic regions on the right moves with 
compaction. The pressure corresponding to the beginning of compaction in hydrostatic conditions 
Pc is defined by the compaction curve. Uniaxial strain loading path is shown with the bold dashed line.  
 

The ultimate strength function is based on the Hoek and Brown (H&B)  [2,3] strength 

criterion that relates the maximum ( 1σ ) and minimum ( 3σ ) principal stress on the failure 

surface as 
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For most rocks ½ is a reasonable value for n. Parameter s is equal to unity for intact 

material and less than unity for in situ material. Hoek [4] gives an empirical relationship 

between the coefficients, s and m and the Geologic Strength Index (GSI) 
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In (13),  is the value of m for intact rock; it can be obtained from static lab tests. im

For triaxial compression with σe = Yf, the principal stresses σ1 and σ3 are given by 

 σ1 – σ3 = Yf ,  σ3 =  p – 
Yf
3   ,  (14)  

so that the H&B function (12) yields  

 
Yf
Yc

 = [s + 
m p
Yc

 – 
m Yf
3Yc

]
n
  , (15) 

When n=0.5, Eq. (15) becomes a quadratic equation and the failure strength Yf can be 

expressed in terms of pressure and unconfined compressive strength Yc as 
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For the more general case where 0.5n ≠ , Eq. (16) takes the form: 
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We use a measure of damage, Ω expressed through 2φ , the total amount of bulking 

porosity (dilatancy) generated in the material, as 

10,
1 2

2 <Ω<
−+

−
=Ω

D
D

cr

cr

φφ
φφ

,    (18) 

where D is the rate of softening. As damage accumulates during loading, the material 

softens. This is expressed mathematically in the model by making m and s functions of 



damage. For simplicity, we use the same functional form as the empirical law relating 

those parameters to the Geologic Strength Index: 
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The function P0 that defines the point of intersection of the onset of yield surface (Y0 in 

(10)) and the hardening cap (see Figure 1) is specified in terms of the compaction 

pressure Pc by the form 

 P0 = α Pc0 + β (Pc – Pc0) , (20) 

where {0<α<1, 0<β<1} are constants and Pc0 is the value of Pc in the reference 

configuration defined as Pc0 =Kµc. (21)   

The value of α can be determined by iteratively solving the equation 

 
4
3 αPc0 = C Yf(αPc0), (22) 

which specifies the intersection of the lower end of Mogi line [5] with the onset curve 

Y0(p). 

 Strain rate scaling is introduced by defining a function R(
•
ε) of the equivalent total 

strain rate  

 
•
ε = 

2
3 D' • D'  ,   D’ = D – 

1
3 (D • I) I  (23) 

The following function of form was used for R 
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The final yield surface including loading direction effects and the rate effects similarly to 

[6] and takes the form 

 ,   (25) )())(/()( βεε FRpYRY TXC
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=

where )(βF  is  a function of the Lode angle described in [8]. 

2.3 Porous compaction and dilation 

Porosity changes in the model are described in terms of three source terms as  

 , (26)  321 φφφφ &&&& ++=u

 

1φ& describes compaction of the intact material, describes dilatancy, or bulking, and   

describes changes in in situ porosity associated with fractures and other inhomogeneities 

in the medium

2φ& 3φ&

2.  

Compaction of the primary porosity is described using target porosity , which defines 

the compaction curve under quasi-static loading: 

*
1φ

 pτφφφ /*
111 −=& , (27)  

where pτ  is a function of the deformation rate representing a characteristic time for 

compaction, , and is a function of adjusted compression. )ˆ(*
1 µφ

 For simplicity, we assume that the reference compaction curve is a linear function of 

adjusted compression as 

                                                 

2 The present study considers only intact material behavior. The model for secondary porosity will not be 

discussed further in this paper. 
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 The compression shifts bse µµµ ,,  describe effects of heating ( eµ ), shear enhanced 

compaction ( sµ ) and bulking ( ). The value of bµ εµ  can be found by inverting the EOS 

as 

 ( )( )( )ζρεµ ∂∂Φ−= /1/ se p  (29)  
Functions sµ  and  are described below. bµ

2.3.1 Bulking shift.  

The volumetric strain shift associated with bulking, bµ , is an increasing function of 

bulking porosity specified by the user. This parameter is a measure of the amount of 

bulking porosity that can be recompacted in subsequent loading. If =0, then all the 

bulking porosity can be recompacted in compression. To ensure continuity in the 

compaction response, the maximum shift of the compaction curve associated with 

bulking should not exceed the value  

bµ
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For the linear compaction behavior expressed in Eq.   (28) the bulking shift can be 

expressed as a fraction of the maximum shift  
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Parameter γ in Eq.  (31) defines the fraction of the bulking porosity that is compacted 

together with incipient porosity. 



2.3.2 Bulking rate 

The bulking (dilatancy) rate is specified as:  
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where the functional form for A is chosen to allow for variable dilatancy with  

specifying the degree of associativity at high pressures, where the dependence of the 

yield strength on pressure is generally not very strong, and  specifying the degree of 

associativity at low pressures, where the yield strength is generally a strong function of 

pressure. In both cases, A=1 corresponds to fully associative flow. 

0A

1A

2.3.4 Shear-enhanced compaction.  

To make compaction consistent with the yield surface we need to find a function ˆ sµ  that 

would make the onset of compaction and yielding simultaneous. The shift can be 

expressed in terms of cap size assuming constant bulk modulus as 
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where the compaction pressure  is expressed using a linear compaction curve as cP
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According to   (28) and , (33), compaction will start earlier in the presence of 

deviatoric stresses, at about the same time as yielding. The rate of compaction is defined 

primarily by the slope S. To reduce the number of model parameters we used the 

assumption that at full compaction the material has the same density regardless of the 

loading path, which gives the following expression for the slope S 
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Since both  and  vary during compaction, we use corrections proportional to the 

projected porosity change to account for these changes.   Thus in (36) we use corrected 

values of  and  taken as 
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where  is a trial target porosity calculated without corrections from the compaction 

curve   (28). Figure 2 below illustrates the dependence of the compaction slope on 
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Fig.2. Dependence of the target curve on the shear enhanced compaction sµ . 

2.4 Numerical integration and hardening corrections  

Since the strength of geologic materials exhibits a strong sensitivity to plastic strain and 

pressure, stable integration of the constitutive equations for these materials is very 

important. Due to strong nonlinearity of material behavior implicit integration may be 



required in the general case. However, in most cases it is possible to avoid costly 

iterations by applying an explicit integration algorithm that accounts for the first order 

effects of plastic-strain and pressure hardening (e.g., see [7]).  

To update the state of material at a given arbitrary time step, we use the following 

sequence of steps: 

1. Porous compaction  

Calculate a new value of  as described above. Adjust the pressure due to 

porosity change. 

cP

2. Yield strength calculation 
Calculate new strength using cap factor found in the previous step as well as new 

derivatives and
p

Y
P

Y
ε

∂ ∂
∂ ∂

, which are used in the following steps. 

3. New shear modulus calculation 

Calculate new shear modulus using new bulk modulus and Poisson ratio. 

4. Bulking rate calculation 

Calculate bulking rate using new 
P
Y

∂
∂  and pressure corrected for porous 

compaction. 

5. Stress update and plastic strain calculation 

The integration scheme described in [8] uses the radial return method and 

determines the final value of elastic distortional deformation  in terms of an 

elastic trial values  and  of  and  respectively as 
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where λ is scale factor given by 
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Including the first order effects of strain and pressure hardening the value of yield 

strength used in   (38) can be expressed as 
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We will only consider pressure change due to bulking since it may happen at 

constant volume. Unlike the changes in pressure proportional to the volume 

change, pressure changes due to bulking can cause a large difference in the 

amount of plastic strain calculated. The pressure increment is proportional to the 

porosity change during bulking; it is related to the plastic strain as 
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where the plastic strain increment is expressed as 
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Thus, the yield strength at the end of the time step is a linear function of λ as 
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Substituting (42) into (38) gives the following expression for λ 
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6. Bulking porosity calculation 



Using the bulking rate from step 4, and the increment in plastic strain found in the 

previous step, we next calculate the new value of unloaded bulking porosity. 

7. Pressure update 

New unloaded porosity is used to find solid density and calculate new solid 

pressure with EOS 

3. Simulation of static tests 

Laboratory data [11] were used to calibrate the model. The model fit of experimental data 

for concrete is shown in Fig.3 and Fig.4 below.  
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Fig.3 Experimental (markers) and calculated (lines) triaxial tests for concrete. 
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Fig.4 Uniaxial compression of concrete. Experimental points are shown with markers. 

4. Spherical cavity expansion simulation 

Spherical cavity expansion simulations are much simpler and much easier to perform 

than high fidelity penetration simulations using first principles codes. However, because 

cavity expansion simulations afford a reasonable approximation of the conditions at the 

nose of a penetrator, they are ideally suited for parameter sensitivity studies to examine 

trends in the model and to assess the effects of various parameters and physical processes 

on penetration. 

 Using the experimentral data presented in [11], we performed a series of cavity 

expansion simulations. A Lagrangian mesh containing 2000 quadrilateral elements with 

2121 nodes was used. Radial velocity in the range from 100 m/s to 600 m/s was applied 

at the nodes along the cavity wall and a nonreflecting boundary condition was used at the 

outermost boundary of the computational domain. The purpose of these calculations is to 

find a forcing function that can be applied to the projectile to model its deceleration and 



the final penetration depth. This method assumes that the loading path in a spherical 

cavity expansion problem is very similar to one at the nose of the projectile. However, 

our model includes strength softening, so that the stress reaches a maximum before it 

decreases approaching a constant value corresponding to the failed material as it is shown 

in Fig.5. In this case, it is not clear how to derive the forcing function from the cavity 

expansion. Figure 6 shows both maximum and final stresses as functions of the cavity 

velocity as well as analytical fits for the calculated points with quadratic functions. The 

same picture also shows the forcing function used in [11] and an improved forcing 

function, which gives better agreement with the experiment. 
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Fig.5 Radial Stress evolution for a cavity with an initial radius of 40 mm moving at a 
velocity of  200 m/s velocity. 
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Fig.6 Calculated radial stress as a function of boundary velocity for the spherical cavity 
expansion problem. Points are calculations, and lines are analytic fits used in boundary 
conditions. 
 

 5. Simulation of penetration into low-strength (23 MPa) concrete 

The model described in this paper was originally developed to model spherical 

explosions in porous geologic material, both in dry and saturated conditions. Numerical 

simulations of penetration into geologic media validate the model for another type of 

problem with a more complex loading path. It turns out that some parameters in the 

model that did not significantly affect spherical wave propagation or static test results 

under a wide range of triaxial loading histories, have a much greater effect on the results 

of penetration simulations. The most important parameter is the softening rate D in Eq. 

(18) 



Figure 7 shows both the results of spherical cavity expansion model and the hydrocode 

calculations with the material model described in this paper. Dashed lines show analytical 

results obtained using three different forcing functions and the method described in [9]. 

The “upper bound” curve is based on the forcing function shown in Fig.6 with the lowest 

curve. The “low bound” curve is based on the forcing function shown in Fig.6 with the 

highest curve. And the dashed curve in the middle was obtained using the same forcing 

functions as described in the paper of Warren et. al. [11]. Experimental data points in the 

figure are identified with ‘X’ symbols. The “+” symbols identify results of Lagrangian 

spherical cavity expansion calculations with SANDIA’s PRONTO hydrocode as 

described in [11]. The bold solid line represents our Lagrangian calculations with the 

same boundary conditions, and the thin solid line shows our calculations with the 

improved boundary conditions. The Squares show our hydrocode simulation results 

performed with GEODYN –eulerian AMR hydrocode. 
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Fig.7 Experimental and calculated depth of penetration for various impact velocities. 



6. Conclusion 

We have demonstrated that the model developed can successfully predict penetration into 

porous geologic materials. Effects of strength softening, bulking and porous compaction 

are important to reproduce correct penetration depth in the calculations. 

Spherical cavity expansion method is useful for the parameter sensitivity study but is not 

a suitable substitute to high fidelity numerical modeling of the penetration because of 

complexity in material behavior.   
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