4,455 research outputs found

    Finite size scaling of current fluctuations in the totally asymmetric exclusion process

    Full text link
    We study the fluctuations of the current J(t) of the totally asymmetric exclusion process with open boundaries. Using a density matrix renormalization group approach, we calculate the cumulant generating function of the current. This function can be interpreted as a free energy for an ensemble in which histories are weighted by exp(-sJ(t)). We show that in this ensemble the model has a first order space-time phase transition at s=0. We numerically determine the finite size scaling of the cumulant generating function near this phase transition, both in the non-equilibrium steady state and for large times.Comment: 18 pages, 11 figure

    Unifying approach for fluctuation theorems from joint probability distributions

    Full text link
    Any decomposition of the total trajectory entropy production for Markovian systems has a joint probability distribution satisfying a generalized detailed fluctuation theorem, when all the contributing terms are odd with respect to time reversal. The expression of the result does not bring into play dual probability distributions, hence easing potential applications. We show that several fluctuation theorems for perturbed non-equilibrium steady states are unified and arise as particular cases of this general result. In particular, we show that the joint probability distribution of the system and reservoir trajectory entropies satisfy a detailed fluctuation theorem valid for all times although each contribution does not do it separately

    Cohomology of groups of diffeomorphims related to the modules of differential operators on a smooth manifold

    Full text link
    Let MM be a manifold and TMT^*M be the cotangent bundle. We introduce a 1-cocycle on the group of diffeomorphisms of MM with values in the space of linear differential operators acting on C(TM).C^{\infty} (T^*M). When MM is the nn-dimensional sphere, SnS^n, we use this 1-cocycle to compute the first-cohomology group of the group of diffeomorphisms of SnS^n, with coefficients in the space of linear differential operators acting on contravariant tensor fields.Comment: arxiv version is already officia

    On sl(2)-equivariant quantizations

    Full text link
    By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl(2)-equivariant quantization exists.Comment: 09 pages, LaTeX2e, no figures; to appear in Journal of Nonlinear Mathematical Physic

    Deformations of modules of differential forms

    Full text link
    We study non-trivial deformations of the natural action of the Lie algebra Vect(Rn)\mathrm{Vect}({\mathbb R}^n) on the space of differential forms on Rn{\mathbb R}^n. We calculate abstractions for integrability of infinitesimal multi-parameter deformations and determine the commutative associative algebra corresponding to the miniversal deformation in the sense of \cite{ff}.Comment: Published by JNMP at http://www.sm.luth.se/math/JNM
    corecore