18,799 research outputs found
Nondiffracting Accelerating Waves: Weber waves and parabolic momentum
Diffraction is one of the universal phenomena of physics, and a way to
overcome it has always represented a challenge for physicists. In order to
control diffraction, the study of structured waves has become decisive. Here,
we present a specific class of nondiffracting spatially accelerating solutions
of the Maxwell equations: the Weber waves. These nonparaxial waves propagate
along parabolic trajectories while approximately preserving their shape. They
are expressed in an analytic closed form and naturally separate in forward and
backward propagation. We show that the Weber waves are self-healing, can form
periodic breather waves and have a well-defined conserved quantity: the
parabolic momentum. We find that our Weber waves for moderate to large values
of the parabolic momenta can be described by a modulated Airy function. Because
the Weber waves are exact time-harmonic solutions of the wave equation, they
have implications for many linear wave systems in nature, ranging from
acoustic, electromagnetic and elastic waves to surface waves in fluids and
membranes.Comment: 10 pages, 4 figures, v2: minor typos correcte
An algorithm for computing the 2D structure of fast rotating stars
Stars may be understood as self-gravitating masses of a compressible fluid
whose radiative cooling is compensated by nuclear reactions or gravitational
contraction. The understanding of their time evolution requires the use of
detailed models that account for a complex microphysics including that of
opacities, equation of state and nuclear reactions. The present stellar models
are essentially one-dimensional, namely spherically symmetric. However, the
interpretation of recent data like the surface abundances of elements or the
distribution of internal rotation have reached the limits of validity of
one-dimensional models because of their very simplified representation of
large-scale fluid flows. In this article, we describe the ESTER code, which is
the first code able to compute in a consistent way a two-dimensional model of a
fast rotating star including its large-scale flows. Compared to classical 1D
stellar evolution codes, many numerical innovations have been introduced to
deal with this complex problem. First, the spectral discretization based on
spherical harmonics and Chebyshev polynomials is used to represent the 2D
axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a
smooth spectral representation of the fields. The properties of Picard and
Newton iterations for solving the nonlinear partial differential equations of
the problem are discussed. It turns out that the Picard scheme is efficient on
the computation of the simple polytropic stars, but Newton algorithm is
unsurpassed when stellar models include complex microphysics. Finally, we
discuss the numerical efficiency of our solver of Newton iterations. This
linear solver combines the iterative Conjugate Gradient Squared algorithm
together with an LU-factorization serving as a preconditionner of the Jacobian
matrix.Comment: 40 pages, 12 figures, accepted in J. Comput. Physic
- …
